材料科学基础基本概念-名词解释
单晶体:是指在整个晶体内部原子都按照周期性的规则排列。
多晶体:是指在晶体内每个局部区域里原子按周期性的规则排列,但不同局部区域之间原子的排列方向并不相同,因此多晶体也可看成由许多取向不同的小单晶体(晶粒)组成
点缺陷(Point defects):最简单的晶体缺陷,在结点上或邻近的微观区域内偏离晶体结构的正常排列。在空间三维方向上的尺寸都很小,约为一个、几个原子间距,又称零维缺陷。包括空位vacancies、间隙原子interstitial atoms、杂质impurities、溶质原子solutes等。
线缺陷(Linear defects):在一个方向上的缺陷扩展很大,其它两个方向上尺寸很小,也称为一维缺陷。主要为位错dislocations。
面缺陷(Planar defects):在两个方向上的缺陷扩展很大,其它一个方向上尺寸很小,也称为二维缺陷。包括晶界grain boundaries、相界phase boundaries、孪晶界twin boundaries、堆垛层错stacking faults等。
空位晶体中点阵结点上的原子以其平衡位置为中心作热振动,当振动能足够大时,将克服周围原子的制约,跳离原来的位置,使得点阵中形成空结点,称为空位vacancies
肖脱基(Schottky)空位:迁移到晶体表面或内表面的正常结点位置,使晶体内部留下空位。
弗兰克尔(Frenkel)缺陷:挤入间隙位置,在晶体中形成数目相等的空位和间隙原子。
晶格畸变:点缺陷破坏了原子的平衡状态,使晶格发生扭曲,称晶格畸变。从而使强度、硬度提高,塑性、韧性下降;电阻升高,密度减小等。
热平衡缺陷:由于热起伏促使原子脱离点阵位置而形成的点缺陷称为热平衡缺陷(thermal equilibrium defects),这是晶体内原子的热运动的内部条件决定的。
过饱和的点缺陷:通过改变外部条件形成点缺陷,包括高温淬火、冷变形加工、高能粒子辐照等,这时的点缺陷浓度超过了平衡浓度,称为过饱和的点缺陷(supersaturated point defects) 。
位错:当晶格中一部分晶体相对于另一部分晶体发生局部滑移时,滑移面上滑移区与未滑移区的交界线称作位错
刃型位错:当一个完整晶体某晶面以上的某处多出半个原子面,该晶面象刀刃一样切入晶体,这个多余原子面的边缘就是刃型位错。
刃型位错线可以理解为已滑移区和未滑移区的分界线,它不一定是直线
螺型位错:位错附近的原子是按螺旋形排列的。螺型位错的位错线与滑移矢量平行,因此一定是直线
混合位错:一种更为普遍的位错形式,其滑移矢量既不平行也不垂直于位错线,而与位错线相交成任意角度。可看作是刃型位错和螺型位错的混合形式。
柏氏矢量 b: 用于表征不同类型位错的特征的一个物理参量,是决定晶格偏离方向与大小的向量,可揭示位错的本质。
位错的滑移(守恒运动):在外加切应力作用下,位错中心附近的原子沿柏氏矢量b方向在滑移面上不断作少量位移(小于一个原子间距)而逐步实现。
交滑移:由于螺型位错可有多个滑移面,螺型位错在原滑移面上运动受阻时,可转移到与之相交的另一个滑移面上继续滑移。如果交滑移后的位错再转回到和原滑移面平行的滑移面上继续运动,则称为双交滑移。
位错滑移的特点
1) 刃型位错滑移的切应力方向与位错线垂直,而螺型位错滑移的切应力方向与位错线平行;
2) 无论刃型位错还是螺型位错,位错的运动方向总是与位错线垂直的;(伯氏矢量方向代表晶体的滑移方向)
3) 刃型位错引起的晶体的滑移方向与位错运动方向一致,而螺型位错引起的晶体的滑移方向与位错运动方向垂直;
4) 位错滑移的切应力方向与柏氏矢量一致;位错滑移后,滑移面两侧晶体的相对位移与柏氏矢量一致。
5) 对螺型位错,如果在原滑移面上运动受阻时,有可能转移到与之相交的另一滑移面上继续滑移,这称为交滑移 (双交滑移)
派-纳力:晶体滑移需克服晶体点阵对位错的阻力,即点阵阻力
位错的攀移(非守恒运动):刃型位错在垂直于滑移面方向上的运动,主要是通过原子或空位的扩散来实现的(滑移过程基本不涉及原子的扩散)。
位错在某一滑移面上运动时,对穿过滑移面的其它位错(林位错)的交割。包括扭折和割阶。
tilt扭折:位错交割形成的曲折线段在位错的滑移面上时,称为扭折。
割阶:若该曲折线段垂直于位错的滑移面时,称为割阶。
位错交割的特点
1) 运动位错交割后,在位错线上可能产生一个扭折或割阶,其大小和方向取决于另一位错的柏氏矢量,但具有原位错线的柏氏矢量(指扭折或割阶的长度和方向)
2) 所有的割阶都是刃型位错,而扭折可以是刃型也可是螺型的。
3) 扭折与原位错线在同一滑移面上,可随位错线一道运动,几乎不产生阻力,且在线张力的作用下易于消失;
4)割阶与原位错不在同一滑移面上,只能通过攀移运动,所以割阶是位错运动的障碍--- 割阶硬化 
位错的应变能:位错周围点阵畸变引起的弹性应力场,导致晶体能量的增加,称为位错的应变能或位错的能量。
位错密度:单位体积内所包含的位错线总长度。 
                          undefined = L / V (cm-2)
一般,位错密度也定义为单位面积所见到的位错数目
                          undefined = n / A (cm-2)
单位位错 Unit dislocation:柏氏矢量等于单位点阵矢量的位错
全位错 Perfect dislocation:柏氏矢量等于点阵矢量或其整数倍的位错,全位错滑移后晶体原子排列不变
不全位错 Imperfect dislocation:柏氏矢量不等于点阵矢量整数倍的位错,不全位错滑移后晶体原子排列规律变化
部分位错 Partial dislocation:柏氏矢量小于点阵矢量的位错
堆垛层错:实际晶体结构中,密排面的正常堆垛顺序有可能遭到破坏和错排,称为堆垛层错,
简称层错。
位错反应:位错线之间可以合并或分解,称为位错反应
界面interface:通常包含几个原子层厚的区域,其原子排列及化学成分不同于晶体内部,可视为二维结构分布,也称为晶体的面缺陷。包括:外表面和内界面
外表面:指固体材料与气体或液体的分界面。它与摩擦、吸附、腐蚀、催化、光学、微电子等密切相关。
内界面:分为 晶粒界面、亚晶界、孪晶界、层错、相界面等。
表面能:晶体表面单位面积自由能的增加,可理解为晶体表面产生单位面积新表面所作的功 γ = dW/ds
小角度晶界:(Low-angle grain boundary)相邻晶粒的位相差小于10º亚晶界一般为2º左右。
对称倾斜晶界:(symmetric tilt boundary) 晶界两侧晶体互相倾斜 晶界的界面对于两个晶粒
是对称的,其晶界视为一列平行的刃型位错组成。
大角度晶界:(High-angle grain boundary) 相邻晶粒的位相差大于10º
重合位置点阵:当两个相邻晶粒的位相差为某一值时,若设想两晶粒的点阵彼此通过晶界向对方延伸,则其中一些原子将出现有规律的相互重合。由这些原子重合位置所组成的比原来晶体点阵大的新点阵,称为重合位置点阵。
晶界特性
1)晶粒的长大和晶界的平直化能减少晶界面积和晶界能,在适当的温度下是一个自发的过程;须原子扩散实现
2) 晶界处原子排列不规则,常温下对位错的运动起阻碍作用,宏观上表现出提高强度和硬度;而高温下晶界由于起粘滞性,易使晶粒间滑动;
3) 晶界处有较多的缺陷,如空穴、位错等,具有较高的动能,原子扩散速度比晶内高;
4) 固态相变时,由于晶界能量高且原子扩散容易,所以新相易在晶界处形核;
5) 由于成分偏析和内吸附现象,晶界容易富集杂质原子,晶界熔点低,加热时易导致晶界先熔化;undefined过热
6)由于晶界能量较高、原子处于不稳定状态,以及晶界富集杂质原子的缘故,晶界腐蚀比晶内腐蚀速率快。   
孪晶 Twins:两个晶体(或一个晶体的两部分)沿一个公共晶面构成镜面对称的位相关系,这两个晶体称为孪晶;这一公共晶面称为孪晶面(孪晶界) Twin plane (boundary)。
相界:具有不同结构的两相之间的分界面称为“相界”
非共格界面(non-coherent interface):当两相邻晶体在界面处的晶面间距相差很大时,这种相界与大角度晶界相似,可看成是由原子不规则排列的薄过渡层构成
塑性变形的方式:主要通过滑移和孪生、还有扭折。
滑移滑移是指晶体的一部分沿一定的晶面和晶向相对于另一部分发生滑动位移的现象滑移是通过滑移面上的位错的运动来实现的
滑移带:滑移线的集合构成滑移带,滑移带是由更细的滑移线所组成,
滑移系:一个滑移面和其上的一个滑移方向构成一个滑移系
临界切应力:滑移只能在切应力的作用下发生,产生滑移的最小切应力称临界切应力。
孪生孪生是指晶体的一部分沿一定晶面和晶向相对于另一部分所发生的切变。发生切变的部分称孪生带或孪晶,沿其发生孪生的晶面称孪生面
孪生与滑移的主要区别
1)孪生通过晶格切变使晶格位向改变,使变形部分与未变形部分呈镜面对称;而滑移不引起晶格位向改变。
2孪生时,相邻原子面的相对位移量小于一个原子间距;而滑移时滑移面两侧晶体的相对位移量是原子间距的整数倍。
3孪生所需要的切应力比滑移大得多,变形速度大得多
退火孪晶:由于相变过程中原子重新排列时发生错排而产生的,称退火孪晶
位错的塞积:当位错运动到晶界附近时,受到晶界的阻碍而堆积起来,称位错的塞积
细晶强化:通过细化晶粒来同时提高金属的强度、硬度、塑性和韧性的方法称细晶强化
原因因为晶粒越细,单位体积内晶粒数目越多,参与变形的晶粒数目也越多,变形越均匀,使在断裂前发生较大的塑性变形。强度和塑性同时增加,金属在断裂前消耗的功也越大,因而其韧性也比较好。
固溶强化:随溶质含量增加,固溶体的强度、硬度提高,塑性、韧性下降,称固溶强化
原因:由于溶质原子与位错相互作用的结果,溶质原子不仅使晶格发生畸变,而且易被吸附在位错附近形成柯氏气团,使位错被钉扎住,位错要脱钉,则必须增加外力,从而使变形抗力提高
柯氏Cotrell气团——溶质原子的偏聚现象。在位错线附近存在溶质原子偏聚,位错的滑移受到约束和钉扎作用,塑性变形难度增加,金属材料的强度增加。

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。