Unit 2 The Nature of Scientific Reasoning
by Jacob Bronowski
1    What is the insight in which the scientist tries to see into nature? Can it indeed be called either imaginative or creative? To the literary man the question may seem merely silly. He has been taught that science is a large collection of facts; and if this is true, then the only seeing which scientists need to do is, he supposes, seeing the facts. He pictures them, the colorless professionals of science, going off to work in the morning into the universe in a neutral, unexposed state. They then expose themselves like a photographic plate. And then in the darkroom or laboratory they develop the image, so that suddenly and startlingly it appears, printed in capital letters, as a new formula for atomic energy.
2    Men who have read Balzac and Zola are not deceived by the claims of these writers that they do no more than record the facts. The readers of Christopher Isherwood do not take him literally when he writes “I am a camera.” Yet the same readers solemnly carry with them from their school-days this foolish picture of the scientist fixing by some mechanical p
rocess the facts of nature. I have had of all people a historian tell me that science is a collection of facts, and his voice had not even the ironic rasp of one filing cabinet reproving another.
3    It seems impossible that this historian had ever studied the beginnings of a scientific discovery. The Scientific Revolution can be held to begin in the year 1543 when there was brought to Copernicus, perhaps on his deathbed, the first printed copy of the book he had finished about a dozen years earlier. The thesis of this book is that the earth moves around the sun. When did Copernicus go out and record this fact with his camera? What appearance in nature prompted his outrageous guess? And in what odd sense is this guess to be called a neutral record of fact?
4    Less than a hundred years after Copernicus, Kepler published (between 1609 and 1619) the three laws which describe the paths of the planets. The work of Newton and with it most of our mechanics spring from these laws. They have a solid, matter-of-fact sound. For example, Kepler says that if one squares the year of a planet, one gets a number whic
h is proportional to the cube of its average distance from the sun. Does anyone think that such a law is found by taking enough readings and then squaring and cubing everything in sight? If he does, then, as a scientist, he is doomed to a wasted life; he has as little prospect of making a scientific discovery as an electronic brain has.
5    It was not this way that Copernicus and Kepler thought, or that scientists think today. Copernicus found that the orbits of the planets would look simpler if they were looked at from the sun and not from the earth. But he did not in the first place find this by routine calculation. His first step was a leap of imagination—to lift himself from the earth, and put himself wildly, speculatively into the sun. “The earth conceives from the sun,” he wrote; and “the sun rules the family of stars.” We catch in his mind an image, the gesture of the virile man standing in the sun, with arms outstretched, overlooking the planets. Perhaps Copernicus took the picture from the drawings of the youth with outstretched arms which the Renaissance teachers put into their books on the proportions of the body. Perhaps he had seen Leonardo’s drawings of his loved pupil Salai. I do not know. To me, the gesture of Copernicus, the shining youth looking outward from the sun, is still vivid in a drawing which
William Blake in 1780 based on all these: the drawing which is usually called Glad Day.
6    Kepler’s mind, we know, was filled with just such fanciful analogies; and we know what they were. Kepler wanted to relate the speeds of the planets to the musical intervals. He tried to fit the five regular solids into their orbits. None of these likenesses worked, and they have been forgotten; yet they have been and they remain the stepping stones of every creative mind. Kepler felt for his laws by way of metaphors, he searched mystically for likenesses with what he knew in every strange corner of nature. And when among these guesses he hit upon his laws, he did not think of their numbers as the balancing of a cosmic bank account, but as a revelation of the unity in all nature. To us, the analogies by which Kepler listened for the movement of the planets in the music of the spheres are farfetched. Yet are they more so than the wild leap by which Rutherford and Bohr in our own century found a model for the atom in, of all places, the planetary system?
7    No scientific theory is a collection of facts. It will not even do to call a theory true or false in the simple sense in which every fact is either so or not so. The Epicureans held that
matter is made of atoms two thousand years ago and we are now tempted to say that their theory was true. But if we do so we confuse their notion of matter with our own. John Daltonxposed in 1808 first saw the structure of matter as we do today, and what he took from the ancients was not their theory but something richer, their image: the atom. Much of what was in Dalton’s mind was as vague as the Greek notion, and quite as mistaken. But he suddenly gave life to the new facts of chemistry and the ancient theory together, by fusing them to give what neither had: a coherent picture of how matter is linked and built up from different kinds of atoms. The act of fusion is the creative act.

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。