Python中operator模块的操作符使⽤⽰例总结
operator模块是python中内置的操作符函数接⼝,它定义了⼀些算术和⽐较内置操作的函数。operator模块是⽤c实现的,所以执⾏速度⽐python代码快。
逻辑操作
from operator import *
a = [1, 2, 3]
b = a
print 'a =', a
print 'b =', b
print
print 'not_(a)  :', not_(a)
print 'truth(a)  :', truth(a)
print 'is_(a, b)  :', is_(a, b)
print 'is_not(a, b) :', is_not(a, b)
打印结果:
a = [1, 2, 3]
b = [1, 2, 3]
not_(a)  : False
truth(a)  : True
is_(a, b)  : True
is_not(a, b): False
可以通过结果知道,operator的⼀些操作函数与原本的运算是相同的。
⽐较操作符
operator提供丰富的⽐较操作。
a = 3
b = 5
print 'a =', a
print 'b =', b
print
for func in (lt, le, eq, ne, ge, gt):
print '{0}(a, b):'.format(func.__name__), func(a, b)
打印结果
a = 3
b = 5
lt(a, b): True
le(a, b): True
eq(a, b): False
ne(a, b): True
ge(a, b): False
gt(a, b): False
这些函数等价于<、<=、==、>=和>的表达式语法。
算术操作符
处理数字的算术操作符也得到⽀持。
a, b, c, d = -1, 2, -3, 4
print 'a =', a
print 'b =', b
print 'c =', c
print 'd =', d
print '\nPositive/Negative:'
print 'abs(a):', abs(a)
print 'neg(a):', neg(a)
print 'neg(b):', neg(b)
print 'pos(a):', pos(a)
print 'pos(b):', pos(b)
打印结果
a = -1
b = 2
c = -3
d = 4
Positive/Negative:
abs(a): 1
neg(a): 1
neg(b): -2
pos(a): -1
pos(b): 2
abs返回值得绝对值,neg返回(-obj), pos返回(+obj)。
a = -2
b = 5.0
print 'a =', a
print 'b =', b
print '\nArithmetic'
print 'add(a, b)    :', add(a, b)
print 'div(a, b)    :', div(a, b)
print 'floordiv(a, b)  :', floordiv(a, b)
print 'mod(a, b)    :', mod(a, b)
print 'mul(a, b)    :', mul(a, b)
print 'pow(a, b)    :', pow(a, b)
print 'sub(a, b)    :', sub(a, b)
print 'truediv(a, b)  :', truediv(a, b)
打印结果
a = -2
b = 5.0
Arithmetic
add(a, b)    : 3.0
div(a, b)    : -0.4
floordiv(a, b)  : -1.0
mod(a, b)    : 3.0 # 查看负数取模
mul(a, b)    : -10.0
pow(a, b)    : -32.0
sub(a, b)    : -7.0
truediv(a, b)  : -0.4
mod表⽰取模, mul 表⽰相乘,pow是次⽅, sub表⽰相减
a = 2
b = 6
print 'a =', a
print 'b =', b
print '\nBitwise:'
print 'and_(a, b)  :', and_(a, b)
print 'invert(a)  :', invert(a)
print 'lshift(a, b) :', lshift(a, b)
print 'or_(a, b)  :', or_(a, b)
print 'rshift(a, b) :', rshift(a, b)
print 'xor(a, b)  :', xor(a, b)
打印结果
a = 2
b = 6
Bitwise:
and_(a, b)  : 2
invert(a)  : -3
lshift(a, b) : 128
or_(a, b)  : 6
rshift(a, b) : 0
xor(a, b)  : 4
and 表⽰按位与, invert 表⽰取反操作, lshift表⽰左位移, or表⽰按位或, rshift表⽰右位移,xor表⽰按位异或。
原地操作符
即in-place操作, x += y 等同于 x = iadd(x, y), 如果复制给其他变量⽐如z = iadd(x, y)等同与z = x; z += y。
a = 3
b = 4
c = [1, 2]
python中lambda怎么使用d = ['a', 'b']
print 'a =', a
print 'b =', b
print 'c =', c
print 'd =', d
print
a = iadd(a, b)
print 'a = iadd(a, b) =>', a
print
c = iconcat(c, d)
print 'c = iconcat(c, d) =>', c
属性和元素的获取⽅法
operator模块最特别的特性之⼀就是获取⽅法的概念,获取⽅法是运⾏时构造的⼀些可回调对象,⽤来
获取对象的属性或序列的内容,获取⽅法在处理迭代器或⽣成器序列的时候特别有⽤,它们引⼊的开销会⼤⼤降低lambda或Python函数的开销。from operator import *
class MyObj(object):
def __init__(self, arg):
super(MyObj, self).__init__()
self.arg = arg
def __repr__(self):
return 'MyObj(%s)' % self.arg
objs = [MyObj(i) for i in xrange(5)]
print "Object:", objs
g = attrgetter("arg")
vals = [g(i) for i in objs]
print "arg values:", vals
print "reversed:", objs
print "sorted:", sorted(objs, key=g)
结果:
Object: [MyObj(0), MyObj(1), MyObj(2), MyObj(3), MyObj(4)]
arg values: [0, 1, 2, 3, 4]
reversed: [MyObj(4), MyObj(3), MyObj(2), MyObj(1), MyObj(0)]
sorted: [MyObj(0), MyObj(1), MyObj(2), MyObj(3), MyObj(4)]
属性获取⽅法类似于
lambda x, n='attrname':getattr(x,nz)
元素获取⽅法类似于
lambda x,y=5:x[y]
from operator import *
l = [dict(val=-1*i) for i in xrange(4)]
print "dictionaries:", l
g = itemgetter("val")
vals = [g(i) for i in l]
print "values: ", vals
print "sorted:", sorted(l, key=g)
l = [(i,i*-2) for i in xrange(4)]
print "tuples: ", l
g = itemgetter(1)
vals = [g(i) for i in l]
print "values:", vals
print "sorted:", sorted(l, key=g)
结果如下:
dictionaries: [{'val': 0}, {'val': -1}, {'val': -2}, {'val': -3}]
values: [0, -1, -2, -3]
sorted: [{'val': -3}, {'val': -2}, {'val': -1}, {'val': 0}]
tuples: [(0, 0), (1, -2), (2, -4), (3, -6)]
values: [0, -2, -4, -6]
sorted: [(3, -6), (2, -4), (1, -2), (0, 0)]
除了序列之外,元素获取⽅法还适⽤于映射。
结合操作符和定制类
operator模块中的函数通过相应操作的标准Python接⼝完成⼯作,所以它们不仅适⽤于内置类型,还适⽤于⽤户⾃定义类型。from operator import *
class MyObj(object):
def __init__(self, val):
super(MyObj, self).__init__()
self.val = val
return
def __str__(self):
return "MyObj(%s)" % self.val
def __lt__(self, other):
return self.val < other.val
def __add__(self, other):
return MyObj(self.val + other.val)
a = MyObj(1)
b = MyObj(2)
print lt(a, b)
print add(a,b)
结果如下所⽰:
True
MyObj(3)
类型检查
operator 模块还包含⼀些函数⽤来测试映射、数字和序列类型的API兼容性。
from operator import *
class NoType(object):
pass
class MultiType(object):
def __len__(self):
return 0
def __getitem__(self, name):
return "mapping"
def __int__(self):
return 0
o = NoType()
t = MultiType()
for func in [isMappingType, isNumberType, isSequenceType]:  print "%s(o):" % func.__name__, func(o)
print "%s(t):" % func.__name__, func(t)
结果如下:
isMappingType(o): False
isMappingType(t): True
isNumberType(o): False
isNumberType(t): True
isSequenceType(o): False
isSequenceType(t): True
但是这些测试并不完善,因为借⼝没有严格定义。
获取对象⽅法
使⽤methodcaller可以获取对象的⽅法。
from operator import methodcaller
class Student(object):
def __init__(self, name):
self.name = name
def getName(self):
return self.name
stu = Student("Jim")
func = methodcaller('getName')
print func(stu)  # 输出Jim
还可以给⽅法传递参数:
f=methodcaller('name', 'foo', bar=1)
f(b)  # return  b.name('foo', bar=1)
methodcaller⽅法等价于下⾯这个函数:
def methodcaller(name, *args, **kwargs):
def caller(obj):
return getattr(obj, name)(*args, **kwargs)
return caller

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。