三角函数公式总表
一、角的概念的拓展
1.与终边相同的角的集合:
二、弧度制
1.长度等于半径长的弧所对的圆心角叫做1弧度的角,在弧度制下,1弧度记作1rad(rad可以省略).
弧度制下的弧长公式:,即.
扇形面积公式: .
㈠将角度化为弧度:;;
㈡将弧度化为角度:;;
三、三角函数的定义
1.
2.三角函数线:角α与单位圆的交点P(x,y)
过P点向x轴引垂线,垂足叫M,过A点向x轴
引垂线,交角的终边或反向延长线与点T,则
,,
.
有向线段MP,OM,AT分别称为正弦线,余弦线,正切线.
3. 三角函数符号:一正二正弦,三切四余弦.
四、同角三角函数基本关系式
六边形记忆法图形结构“上弦中切下割左正右余中间1”
1.记忆方法“对角线上两个函数的积为1
2.阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方
3.任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积
四、诱导公式
公式组一 ():
公式组二:
公式组三:
公式组四:
三角函数表格0到90公式组五:
公式组六:
公式组七:
公式组八:
公式组九:
记忆法则:奇变偶不变,符号看象限
四、两角和与差公式
五、二倍角公式
常用数据: 的三角函数值
,
,
注: ⑴以上公式务必要知道其推导思路,从而清晰地“看出”它们之间的联系,它们的变化形式.如
等.
从而可做到:正用、逆用、变形用自如使用各公式.
⑵三角变换公式除用来化简三角函数式外,还为研究三角函数图象及性质做准备.
⑶三角函数恒等变形的基本策略。
①常值代换:特别是用“1”的代换,如1=cos2θ+sin2θ=tanx·cotx=tan45°等。
②项的分拆与角的配凑。如分拆项:;
配凑角(常用角变换):、、
、、等.
③降次与升次。即倍角公式降次与半角公式升次。
④化弦(切)法。将三角函数利用同角三角函数基本关系化成弦(切)。
⑤引入辅助角。asinθ+bcosθ=sin(θ+),这里辅助角所在象限由a、b的符号确定,角的值由tan=确定。
六、半角公式:(符号的选择由所在的象限确定)
七、积化和差公式:
八、和差化积公式:
九、特殊角三角函数弧度数及三角函数值
角度 | 0° | 30° | 45° | 60° | 90° | 120° | 135° | 150° | 180° |
弧度 | 0 | ||||||||
sin | 0 | 1 | 0 | ||||||
cos | 1 | 0 | -1 | ||||||
tan | 0 | 1 | ∕ | -1 | 0 | ||||
角度 | 210° | 225° | 240° | 270° | 300° | 315° | 330° | 360° | |
弧度 | |||||||||
sin | -1 | 0 | |||||||
cos | 0 | 1 | |||||||
tan | 1 | ∕ | -1 | 0 | |||||
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论