2021-2022学年沪科版八年级数学上册期末综合复习压轴题专题提升训练(附答案)1.在平面直角坐标系xOy中,对于点P(x,y),若点Q的坐标为(ax+y,x+ay),则称点Q是点P的“a阶派生点”(其中a为常数,且a≠0).例如:点P(1,4)的“2阶派生点”为点Q(2×1+4,1+2×4),即点Q(6,9).
(1)若点P的坐标为(﹣1,5),则它的“3阶派生点”的坐标为;
(2)若点P的“5阶派生点”的坐标为(﹣9,3),求点P的坐标;
(3)若点P(c+1,2c﹣1)先向左平移2个单位长度,再向上平移1个单位长度后得到了点P1.点P1的“﹣4阶派生点”P2位于坐标轴上,求点P2的坐标.
2.如图,直线l1:y=x+4与y轴交于点A,与x轴交于点B,将直线l1平移到直线l2,直线l2与x轴交于点C,点A与点C,点B与点D分别是平移前后的对应点,若线段AB 在平移过程中扫过的图形面积为20,求点D的坐标.
3.在平面直角坐标系中,O为坐标原点,过点A(8,6)分别作x轴、y轴的平行线,交y 轴于点B,交x轴于点C,点P是从点B出发,沿B→A→C以2个单位长度/秒的速度向终点C运动的一个动点,运动时间为t(秒).3d综合版
(1)直接写出点B和点C的坐标B(,)、C(,);
(2)当点P运动时,用含t的式子表示线段AP的长,并写出t的取值范围;
(3)点D(2,0),连接PD、AD,在(2)条件下是否存在这样的t值,使S△APD=S
,若存在,请求出t值,若不存在,请说明理由.
四边形ABOC
4.如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3.
(1)观察每次变换前后的三角形的变化规律,若将△OA3B3变换成△OA4B4,则A4的坐标是,B4的坐标是.
(2)若按第(1)题到的规律将△OAB进行n次变换,得到△OA n B n,比较每次变换中三角形顶点坐标有何变化,出规律,推测A n的坐标是,B n的坐标是.(3)若按第(1)题到的规律将△OAB进行n次变换,得到△OA n B n,则△OA n B n的面积S为
5.如图,在平面直角坐标系中,O为坐标原点,已知直线y=﹣x+8与x轴、y轴分别交于B、A两点.直线OD⊥直线AB于点D.现有一点P从点D出发,沿线段DO向点O 运动,另一点Q从点O出发,沿线段O
A向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到O时,两点都停止.设运动时间为t秒.
(1)点A的坐标为.
(2)设△OPQ的面积为S,问当t为何值时S的值最大?最大值是多少?
(3)是否存在某一时刻t,使得△OPQ为等腰三角形?若存在,直接写出所有满足条件的t的值;若不存在,则说明理由.
6.请你用学习函数及图象性质时积累的经验和方法探究函数:的图象和性质,并解决以下问题:
x…﹣5﹣4﹣3﹣2﹣1012345…
y…1040a20420b﹣4…
(1)a=;b=.
(2)根据表格中的点,补全函数图象.
(3)根据函数图象,写出此函数的一条性质:.
(4)已知一次函数y1=x+3,结合两函数图象,直接写出当y1≥y时,x的取值范围.
7.为了保障羊肉正常供应,某畜牧集团的A,B两个养殖场共出栏肥羊2000只,B养殖场的肥羊数量是A养殖场的2倍少400只.这批肥羊将运往甲地1300只,乙地700只,运费如下表(单位:元/只).
养殖场
A B
目的地
甲2518
乙2024
(1)求A,B养殖场各出栏多少只肥羊?
(2)设这批肥羊从A养殖场运往甲地x只(100≤x≤700),全部运往甲、乙两地的总费用为y元,求y与x的函数关系式,并设计使总运费最少的调运方案;
(3)当每只肥羊的运费下降a元(0<a≤18且a为整数)时,按(2)中设计的调运方案,总运费不超过
30000元,求a的最小值.
8.已知M、N两地之间有一条240千米长的公路,甲乙两车同时出发,乙车以40千米/时的速度从M地匀速开往N地,甲车从N地沿此公路匀速驶往M地,两车分别到达目的地后停止,甲乙两车相距的路程y(千米)与乙车行驶的时间x(时)之间的函数关系如图所示.
(1)甲车速度为千米/时.
(2)求甲乙两车相遇后的y与x之间的函数关系式.
(3)当甲车与乙车相距的路程为140千米时,请直接写出乙车行驶的时间.
9.小敏学习了一次函数后,尝试着用相同的方法研究函数y=a|x﹣b|+c的图象和性质.(1)在给出的平面直角坐标系中画出函数y=|x﹣2|和y=|x﹣2|+1的图象;
(2)猜想函数y=﹣|x+1|和y=﹣|x+1|﹣3的图象关系;
(3)尝试归纳函数y=a|x﹣b|+c的图象和性质;
(4)当﹣2≤x≤5时,求y=﹣2|x﹣3|+4的函数值范围.
10.如图,直线l1:y1=﹣x+m与y轴交于点A(0,6),直线l2:y=kx+1分别与x轴交于点B(﹣2,0),与y轴交于点C,两条直线交点记为D.
(1)m=,k=;
(2)求两直线交点D的坐标;
(3)根据图象直接写出y1<y2时自变量x的取值范围.
11.已知:如图,点D、E、F、G都在△ABC的边上,DE∥AC,且∠1+∠2=180°(1)求证:AD∥FG;
(2)若DE平分∠ADB,∠C=40°,求∠BFG的度数.
12.如图①,在△ABC中,AD平分∠BAC,AE⊥BC,∠B=40°,∠C=70°.(1)求∠DAE的度数;
(2)如图②,若把“AE⊥BC”变成“点F在DA的延长线上,FE⊥BC”,其它条件不变,求∠DFE的度数.
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论