reactive power什么意思
影响电力系统运行的稳定性的原因及措施
作者:zhangyap… :本站原创 点击数: 0 更新时间:2010-4-13 21:32:22 【字体:小大
XX安全生产信息网(安全生产资料大全)    寻资料>>
前言
所谓电力系统运行的稳定性,就是指在受到外界干扰的情况下发电机组间维持同步运行的能力。研究电力系统稳定性问题归结为研究当系统受到扰动后的运动规律,从而判断系统是否可能失去稳定而研究提高系统稳定性的措施。电力系统稳定性问题,是一个机械运动过程和电磁暂态过程交织在一起的复杂问题,属于电力系统机电暂态过程的X畴。根据扰动量的大小,可将电力系统稳定性分为静态稳定性和暂态稳定性两大类型。
1影响电力系统运行稳定性的因素
在电力系统中,各同步发电机是并联运行的,使并联的所有发电机保持同步是电力系统维持正常运行的基本条件之一。
1.1电力系统的稳定性与系统的发展密切相关
对于早期孤立运行的发电厂和发电机并列的运行在公共母线上,并列运行的稳定性问题并不严重。随着系统容量和供电X围的扩大,许多发电厂并联运行在同一电力系统时,并列运行稳定性日益严重。在现代电力系统中,稳定性问题常称为制约交流远距离输电的输送容量的决定性因素。当电力系统失去稳定时,系统内的同步发电机失步,系统发生振荡,结果会使系统解列,可能造成大面积的用户停电。因此,失去稳定性是电力系统最严重的故障。
1.2电力系统在运行中时刻受到小的扰动
例如负荷的随机变化,汽轮机蒸汽压力的波动、发电机端电压发射点小的偏移等等。在小扰动作用下,系统将会偏离运行平衡点,如果这种偏离很小,小扰动消失后,系统又重新恢复平衡,则称系统是静态稳定的。如果偏离不断扩大,不能重新恢复原来的平衡状态,则系统不能保持静态稳定。
1.3电力系统运行时还会受到大的扰动
例如,电气元件的投入或切除、输电线路发生短路故障等等。在大扰动作用下,如果系统运行状态的偏离是有限的,且在大扰动结束后又达到了新的平衡,则称系统是暂态稳定的。如果偏离不断扩大,不能重新恢复平衡,则称系统失去了暂态稳定。
2.提高电力系统稳定性的措施
现阶段电力系统根据扰动量的大小,可将电力系统稳定性分为静态稳定性和暂态稳定性两大类型。
2.1提高电力系统静态稳定性的措施
从静态稳定的分析可以看出,提高电力系统的静态稳定性,应着力于提高电力系统功率极限。
2.1.1提高发电机电势
提高发电机电势是提高电力系统的功率极限最有效的措施,它主要依靠采用自动励磁调节器并改善其性能来实现。在现代电力系统中,几乎所有的发电机都装有自动励磁调节装置。自动励磁调节器明显地提高了功率极限。当发电机装有比例式励磁调节器时,在静态稳定分析中发电机所呈现的电抗由大到小,并近似维持暂态电势为常数。当有磁力式励磁调节器时,相当于把发电机电抗减小到接近于零,即近似当做发电机端电压维持恒定,这就大大地提高了发电机的功率极限,对提高静态稳定性极为有利。自动励磁调节器在整个发电机投资中所占的比重很小,所以,在各种提高稳定性的措施中,总是优先考虑使用或改善自动励磁调节装置。
2.1.2减少系统的总电抗
从简单电力系统的功率极限表达式可以看出,输电系统的功率极限与系统总电抗成反比,系统电抗越小,功率极限就越大,系统稳定性也就越高。输电系统的总电抗由发电机、变压器和输电线路的电抗组成。发电机和变压器的电抗与它们的结构尺寸有关,一般在发电机和变压器设计时,已考虑在投资和材料相同的条件幸福,力求使它们的电抗减小一些。当发电机和变压器设计时,已考虑在投资和材料相同的条件下,力求使他们的电抗减小一些。当发电机和变压器装有自动励磁调节器时,发电机的实际电抗已由大减小。因此,从发电机结构方面去减小电抗的作用有限。对于变压器而言,其短路阻抗直接影响到制造成本和运行性能,也不宜改变。自耦变压器具有损耗小、体积小、价格便宜的优点外,它的电抗也较小,对提高稳定性有利,故在超高压电力系统中得到了广泛的应用。相对而言,设法减少输电线的电抗,则是一个可循的途径。主要方法之一是采用分裂导线,这可以使线路电抗约减少20%,而且还能减少或避免电晕所引起的有功功率损耗。减少输电线电抗的另一方法是采用串联电容补偿。一般来说,补偿度越大,对系统稳定越有利,但过大的补偿度可能引起发电机的自励磁等异常情况,影响线路继电保护的正确动作,增大短路电流等,一般取补偿度为0.2-0.5.此外,在超高压远距离输电中,如输电功率受稳定性限制,也可采用增加输电回路数,减少等值电抗,以达到提高输电功率的目的。
2.1.3提高和稳定系统电压
要提高系统运行电压水平,最主要的是系统中应装设充足的无功电源。在远距离输电线的中途或在负荷中心装设同步调相机,将有助于提高和稳定系统的运行电压水平,从而提高系统运行的稳定性。合理地选用高一级的电压,除了降低损耗、增加输电容量等作用外,海景提高电力系统的功率极限,这在设计新线路或改造旧线路时常作为一个措施来考虑。这是因为对于同一结构的输电线路,采用的额定电压越高,线路电抗的标幺值就越小,功率极限就越高。
2.2提高电力系统的暂态稳定性的措施
一般来说,提高电力系统静态稳定的措施也有助于提高暂停稳定性。如果提高了故障时和故障切除后的功率极限,这显然增加了最大可能的减速面积,减小了加速面积,从而有利于系统保持暂态稳定性。此外,从从暂态稳定分析来看,除提供系统的功率极限外,还可以采取一些相应的措施,减少发电机转子相对运动的振荡幅度,提高系统的暂态稳定性。对其中一些主要措施列举如下:
2.2.1可使切除故障
利用快速继电保护装置和快速动作的断路器尽快切除故障是提高暂态稳定性的重要措施。实行快速强行励磁在系统发生短路故障时,发电机实行快速强行励磁,能迅速提高发电机的电势,提高故障时和故障切除后发电机的功率特性,将有利于提高系统的暂态稳定性。
2.2.2采用自动重合闸装置
高压输电线的短路故障绝大多数是瞬时性的采用自动重合闸装置,在故障发生后,由继电保护装置启动断路器把故障线路切除,待故障消失后,又立即自动将这一线路重新投入运行,使系统恢复双回线供电,提高了系统的功率极限,有利于保持暂态稳定,同时也提高了供电的可靠性。
2.2.3改善原动机的调节特性
电力系统受到大扰动后,由于发电机输出的电磁功率突然变化,而原动机的功率由于惯性及调速器的时滞等原因,功率不不可能及时相应变化,从而造成了发电机轴上功率的不平衡,引起发电机产生剧烈的相对运动,甚至破坏系统的稳定性。如果原动机调速系统能实行快速调节,使它的功率变化能接近跟上电磁功率的变化,则机组轴上的不平衡功率便可减小,从而防止暂态稳定性的破坏。此外,对于并联运行发电机组,也可在故障发生后切除部分发电机组,以减少过剩功率,或采用机械制动的方法来消耗掉一部分原动机的机械功率。
2.2.4采用电气制动
所谓"电气制动”,就是在送端发电机附近装设一电阻性负载,当系统发生短路故障而引起发电机产生过剩功率时,自动地投入这一电阻负荷以吸收过剩功率,抑制发电机的加速,因而,提高了电力系统的暂态稳定性。
3.结论
电力系统是由发电、供电和用电设备组合在一起的一个整体,各设备之间相互关联,某一个设备运行情况变化(如参数改变、发生事故),都会影响到其他设备,有时甚至会波及整个电力系统。因此,当电力系统的生产秩序遭受扰乱时,系统应能自动地迅速消除扰乱,继续正常工作,这就是电力系统应该具备的稳定运行能力。这种能力的大小取决于系统结构、设备性能和运行参数等多方面的因素。换言之,对于具体的电力系统,保持稳定运行的能力有大小,如果超过能力的限度,电力系统就会失去稳定,发电机就不能正常发电,用户就不能正常用电,并且引起系统运行参数的巨大变化,往往会造成大面积停电事故。可见电力系统稳定运行是关系安全生产的重大问题。
无功补偿技术对低压电网功率因数的影响
免费论文网目录: → 理工论文石油与能源论文 发布时间:2010-6-15
《无功补偿技术对低压电网功率因数的影响》为作者原创,免费X文网最新为您更新《无功补偿技术对低压电网功率因数的影响》
无功补偿技术对低压电网功率因数的影响
关键字:石油与能源动力论文
无功补偿技术对低压电网功率因数的影响
无功补偿技术对低压电网功率因数的影响
The technique of reactive pensation’s influence to low voltage network
贾沛建、唐军
摘要:依据用电设备的功率因数,可测算输电线路的电能损失。
通过现场技术改造,可使低于标准要求的功率因数达标,实现节电目的。本文分析了无功补偿的作用和补偿容量的选择方法,着重论述了低压电网和异步电动机无功补偿容量的配置。结合应用实例说明采用无功补偿技术,提高低压电网和用电设备的功率因数,已成为节电工作的一项重要措施。
关键词: 节电技术 功率因数 无功补偿
Abstract: The power factor of equipment can be used to measure the loss of energy in transmission lines. By refining the technique, we can let the power factor which is below the standard get standardized to save electricity. This article analyses the function of reactive pensation and the ways to choose capacity of pensation. It emphasizes in discussing the configuration of low voltage network and asynchronous motor’s capacity in reactive pensation. By bining with actual examples, this article also explains that using the technique of reactive pensation to improve the power factor of low voltage network and equipment has bee an important measure to save electricity.
Key words: Technique of electricity saving ,Power factor, Reactive pensation
1、前言
无功补偿,就其概念而言早为人所知,它就是借助于无功补偿设备提供必要的无功功率,以提高系统的功率因数,降低能耗,改善电网电压质量。
无功补偿的合理配置原则
从电力网无功功率消耗的基本状况可以看出,各级网络和输配电设备都要消耗一定数量的无功功率,尤以低压配电网所占比重最大。为了最大限度地减少无功功率的传输损耗,提高输配电设备的效率,无功补偿设备的配置,应按照"分级补偿,就地平衡”的原则,合理布局。
(1)总体平衡与局部平衡相结合,以局部为主。
(2)电力部门补偿与用户补偿相结合。
在配电网络中,用户消耗的无功功率约占50%~60%,其余的无功功率消耗在配电网中。因此,为了减少无功功率在网络中的输送,要尽可能地实现就地补偿,就地平衡,所以必须由电力部门和用户共同进行补偿。
(3)分散补偿与集中补偿相结合,以分散为主。
集中补偿,是在变电所集中装设较大容量的补偿电容器。分散补偿,指在配电网络中分散的负荷区,如配电线路,配电变压器和用户的用电设备等进行的无功补偿。集中补偿,主要是补偿主变压器本身的无功损耗,以及减少变电所以上输电线路的无功电力,从而降低供电网络的无功损耗。但不能降低配电网络的无功损耗。因为用户需要的无功通过变电所以下的配电线路向负荷端输送。所以为了有效地降低线损,必须做到无功功率在哪里发生,就应在哪里补偿。所以,中、低压配电网应以分散补偿为主。
(4)降损与调压相结合,以降损为主。
2、影响功率因数的主要因素
功率因数的产生主要是因为交流用电设备在其工作过程中,除消耗有功功率外,还需要无功功率。当有功功率P一定时,如减少无功功率Q,则功率因数便能够提高。在极端情况下,当Q=0时,则其力率=1。因此提高功率因数问题的实质就是减少用电设备的无功功率需要量。

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。