四川大学学报(医学版)2021,52(1): 11-15
J Sichuan Univ (Med Sci)doi: 10.12182/20210160503
内质网应激与肿瘤转移
周景峰\周琴2,陈纯2,潘景轩lA
1.中山大学中山眼科中心眼科学国家重点实验室(广州510060);
2.中山大学附属第七医院(深圳)儿科儿童血液肿瘤专科(深圳518107)
【摘要】肿瘤转移是个多步骤、低效率的生物学过程,在这个复杂过程中,肿瘤细胞发生遗传学及表观遗传学改 变,使肿瘤细胞适应转移过程中所面临的不利微环境,最终在远处器官形成转移灶c内质网应激(endoplasmic reticulum stress, ER stress)弓丨起的未折叠蛋白反应(unfolded protein response,UPR)是调节细胞适应不利微环境的最为重要的信号通 路之一,在肿瘤细胞生长、存活、分化和维持蛋白质稳态等过程中发挥着至关重要的作用,参与到肿瘤转移的各个阶段。
本文对内质网应激信号分子促进肿瘤细胞发生上皮间充质转化(epithelial-mesenchymal transition,EMT)、促进肿瘤的存 活、促进肿瘤的免疫逃逸、促进肿瘤血管新生、促进肿瘤细胞黏附以及促进肿瘤细胞从休眠中苏醒等转移相关特性及其 机制进行综述,为开发肿瘤转移的新靶标提供参考。
【关键词】内质网应激未折叠蛋白质反应肿瘤转移
A Review of the Roles of Endoplasmic Reticulum Stress in Cancer Cell Metastasis ZHOU Jing-feng\ ZHOU Qin2t
CHEN Chun\ PAN Jing-xuan],".1. State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China; 2. Division of Hematology/Oncology, Department of Pediatrics, the Seventh Affiliated Hospital^ Sun Yat-Sen University, Shenzhen 518107, China
A Corresponding author, E-mail:****************.edu
【Abstract】Metastasis is a multistep and low-efficiency biological process driven by acquisition of genetic and/or epigenetic alterations within tumor cells. These evolutionary alterations enable tumor cells to thrive in the inhospitable microenvironment they encounter in the process of metastasis and eventually lead to macroscopic metastases in distant organs. The unfolded protein response (UPR) induced by endoplasmic reticulum (ER) stress is one of the most important mechanisms regulating cellular adaptation to an adverse microenvironment. UPR is involved in all stages of metastasis, playing an important role in tumor cell growth, survival, and differentiation and the process of maintaini
ng protein hemostasis. Sustained activation of ER stress sensors endows tumor cells with better epithelial-mesenchymal transition (EMT), survival, immune escape, angiogenesis, cellular adhesion, dormancy-to reactivation capacity in the process of metastasis. Here, we discussed the role of UPR in regulating the above-mentioned abilities of tumor cells during metastasis, providing a reference for development of new targets for the treatment of tumor metastasis.UPR in regulating the above-mentioned characteristics and mechanisms of tumor cells during metastasis, providing a reference for development of new targets for the treatment of tumor metastasis.
【Keywords】Endoplasmic reticulum stress Unfolded protein response Metastasis
内质网(endoplasmic reticulum,ER)是真核生物细胞 中蛋白质合成、加工、修饰的场所,对维持蛋白质稳态(proteostasis)发挥举足轻重的作用m。当细胞处在营养 缺乏、低氧、钙失衡及氧化应激等压力条件下,将导致非 折叠蛋白(unfolded proteins)或错误折叠蛋白(misfolded proteins)在内质网上积累,产生内质网应激(endoplasmic reticulum stress,ER stress)"1。为了应对内质网应激,细 胞激活一系列适应性反应,以增强对蛋白的折叠和清除能力,从而恢复内质网蛋自稳态,这种自适应性反应机 制被称为未折叠蛋白反应(unfolded protein response,UPR)【241〇
UPR由位于内质网膜的至少3个主要的应力传感器△通信作者,E-mail:****************.edu 介导,即肌醇
需求酶 1(inositol requiring enzyme 1,IRE1)、蛋白激酶R样内质网激酶(PRK R-like en d o p lasm ic reticulum kinase,PERK)和激活转录因子6(activating transcription factor6, ATF6)12'51。在非内质网应激条件 下,他们与相对分子质量为78x l03的分子伴侣蛋白葡萄 糖调节蛋白(glucose-regulated protein78, GRP78/BiP)结 合,处于非活性状态,当发生内质网应激时,非折叠蛋白 或错误折叠蛋白竞争性结合至GRP78/BiP蛋白上,从而使 GRP78/BiP与IRE1、PRKR、ATF6解离,激活下游信号通 路丨2.31。
肿瘤转移至少包括以下7个生物学步骤:①肿瘤细胞 侵袭周围的正常组织;②肿瘤细胞内渗人血管(intravasation);
③肿瘤细胞在循环系统中存活(survival );④肿瘤细胞外
12四川大学学报(医学版)第52卷
渗出血管(extravasation),进入远处器官;⑤肿瘤细胞在
远处靶器官发生驻留;⑥经过一段时间休眠后(dormancy),
在远处器官苏醒(r e a c t i v a t i o n),形成微转移灶
(m ic ro m e ta sta se s);⑦肿瘤细胞在耙器官发生定植
(colonization),形成转移灶|6_91。在这些生物学过程中,肿
瘤细胞可能发生一些遗传学(g en e tic)及表观遗传学
(epigenetic)的改变,使肿瘤细胞适应转移过程中所面
临的不利环境而内质网应激信号分子主要通过3条信
号通路(图1)在肿瘤细胞生长、存活、分化和维持蛋白质
稳态等过程中起着至关重要的作用,参与到肿瘤转移过
Hypoxia, Acidosis, Nutrient deprivation, Oncogene activation,
Misfolded or un folded proteins
1
IR Ela PE I
elF XBPls a] l
l RK ATF6 2a
F4 ATF6f
i -
EMT, Survival, Immune escape, Angiogenesis, Adhesion, Dormancy and reactivation
M etastasis
图1UPR信号通路参与肿瘤转移
Fig 1The roles of UPR in the process of metastasis
ROS: Reactive oxygen species; IRE1: Iositol requiring enzyme 1; XBPls: X- box binding protein 1 spliced; PERK: PRKR-like endoplasmic reticulum kinase; eIF2a:Eukaryotic translation initiation factor 2 Alpha; ATF4: Activating transcription factor 4; ATF6: Activating transcription factor 6; ATF6f: ATF6 cytosolic domain.
reactive oxygen species名词解释l内质网应激信号分子促进肿瘤细胞发生EMT及其机制
上皮间充质转化(epithelial-mesenchymal transition, EMT)是指上皮细胞失去细胞极性获得间充质细胞特性 的生物学过程,被认为是肿瘤细胞内渗至血管的重要步 骤|7]。肿瘤细胞在进行EMT的过程中,E-cadherin表达减 少,上皮细胞黏附能力降低,间充质细胞蛋白vimentin表 达上升,肿瘤细胞运动能力增强[131。许多EMT相关转录 因子(EM T-transcription factors,EMT-TFs)如T w ist、Snail、Slug、Z ebl、Zeb2可以抑制E-cadherin基因的转录,促进肿瘤EMT的进程|41。.
研究表明,内质网应激信号分子主要通过调节EMT-TFs的转录变化影响肿瘤细胞EMT进程|14“51。如IR E la-XBP1信号通路激活可以诱导乳腺癌细胞Snail基因的转录,促进乳腺癌细胞发生EMT,增强其迁移及侵袭能 力116—17|;化疗药物引起的肺腺癌细胞PERK-eIF2a通路激 活,通过增加Snail、Z£S1基因转录水平,促使肺腺癌细胞发生EMT样改变"8|。
2内质网应激信号分子促进肿瘤存活及其 机制
在脱离原发灶之后,肿瘤细胞会面临失巢凋亡、物 理剪切压力(shear stress)、免疫杀伤等多种生存压力,在 血流和宿主器官存活下来是后续形成转移灶的先决条件+91。实验表明内质网应激利于肿瘤细胞获得更强的生 存能力【19】,如IR E la及PERK可以激活STAT3及核因子 (neuclear factor,N F)-k B信号通路,促进抗凋亡基因如 BCL-2家族基因(如BCL-2、BCL-X^)、Caspase-8抑制基 因(如c-f U P、MCL-1)及凋亡抑制蛋白(inhibitor of apoptosis proteins,IA P)等的表达【丨9-2。1。PERK诱导的 ATF4
激活及NRF2蛋白稳定性增强,促进抗氧化基因 N Q O l、H0-1等的转录,减少活性氧(reactive oxygen species,ROS)对细胞的毒性作用,从而抑制肿瘤细胞失巢 凋亡、促进肿瘤细胞生存及转移%221。内质网应激也可以 通过诱导细胞自噬,清除对细胞产生毒性的胞浆蛋白及 受损细胞器,从而促进肿瘤细胞生存|2〃61,如PERK通路激 活介导的ATF4-CHOP信号通路激活可以促进自噬小体 形成及成熟相关基因如Afg5、A&12及B e d in l等的转 录#271,是乳腺癌、结直肠癌、成纤维肉瘤细胞在转移过 程中抵抗失巢凋亡所必需的1221。综上所述,内质网应激 信号分子可以通过促进抗凋亡基因、抗氧化基因及诱导 细胞自噬相关基因的转录促进肿瘤细胞的存活。
3 内质网应激信号分子促进肿瘤细胞免疫逃逸
躲避全身系统免疫和宿主器官局域免疫对肿瘤细胞 的监控、识别和杀伤作用也是造成肿瘤细胞从原发灶转 移至远处器官的重要因素1ul。内质网应激信号分子可以 通过多种途径介导肿瘤细胞免疫逃逸。内质网应激诱导 的UPR可在肿瘤相关树突状细胞中(tum or associated dendritic cells,tDCs)发生,使tDCs IREla-XBPl信号通路 激活,引起脂质积累,降低tDCs的抗原提呈能力,抑制肿 瘤免疫反应的确,在小鼠卵巢癌模型DCs细胞中选择 性敲除XBP1基因可以显著抑制卵巢癌的进展及转移^。在卵巢癌微环境T细胞中,IR Ela-XBPl通路激活可以降 低T细胞谷氨酰胺转运蛋白的数量,下调CD4+T细胞内线 粒体呼吸所需的谷氨酰胺水平,抑制CD4+T 细胞内线粒
第1期周景峰等:内质网应激与肿瘤转移13
体呼吸,从而扰乱T细胞正常抗肿瘤免疫反应,促进肿瘤 进展[29]。在肿瘤相关髓系来源抑制细胞(tumorassociated myeloid-derived suppressor cells,MDSCs)中,内质网应激 导致PERK-A FT4信号通路激活,引起CHOP基因在 MDSCs中高表达,抑制T细胞的功能,M DSCs中缺失 CHOP可以下调IL-6-STAT3信号通路活性,恢复抗肿瘤 免疫反应™。UPR在其余免疫细胞中的功能尚需进一步 研究。
4内质网应激信号分子促进肿瘤血管新生
肿瘤细胞在转移灶快速生长,导致瘤灶中心缺乏氧 气、葡萄糖和其他营养物质,迫使肿瘤细胞释放促血管新 生因子以促进血管新生,增加氧气和营养的输送,从而维 持肿瘤在远处器官生长16_91。内质网应激信号分子能促进 肿瘤血管生成[5]。研究表明,在胶质瘤小鼠模型中抑制 IREla可以显著下调促血管生成因子FGF2、IL-6、IL-8的表达,从而抑制肿瘤细胞生长及血管新生|31i。在三阴性 乳腺癌中,IR E la-X B P ls信号通路可以激活H I F la-VEGFA信号通路轴,促进乳腺癌血管新生[32#。在头颈部 鱗状细胞癌细胞系中,阻断PERK-eIF2a-ATF4信号通路 可以抑制促血管新生因子FGF2、VEGF及IL-6的表达,并 抑制抗血管新生因子THBS1、CXCL14及CXCL10的表 达|19’341。在非小细胞肺癌细胞系中,ATF6何以结合到EGF启动子上并促进EGF的转录,促进血管新生|35]。综上 所述,内质网应激信号分子XBPls、ATF4及ATF6注要通过直接结合到VEGF等促血管新生基因启动子上,上调其 转录水平,促进肿瘤血管新生[11»。
5内质网应激信号分子促进肿瘤细胞驻留
肿瘤细胞在靶器官驻留化是肿瘤转移的又一重要步 骤,已有证据表明,UPR可调节细胞骨架重塑和细胞黏 附|2‘891。细丝蛋白A(filam inA)是参与细胞骨架重塑的肌 动蛋白交联因子,也是内质网应激诱导的UPR通路中 IR E la的主要结合伴侣,IR E la通过直接结合细丝蛋白 A来控制肌动蛋白细胞骨架动力学并促进肿瘤细胞黏附1371。在前列腺癌中,内质网应激分子GRP78可以激活细 胞黏附关键分子FAK(focal adhesion kinase)信号通路,促 进肿瘤细胞侵袭1381。血管细胞黏附分子(vascular cell adhesion m olecule 1,VCAM-1)可以与整合素a4(3+ (integrin a4p+)结合,介导肿瘤细胞与微环境细胞黏附,在乳腺癌中,粑向VCAM-1- integrin a4(3+信号轴可以显著 抑制乳腺癌骨转移[391。研究表明,在多发性骨髓瘤中,XBPls可以促进VCAM-1的表达,XBPls是否能促进肿瘤细胞高表达VCAM-1并促进肿瘤细胞黏附还需进一步研
6内质网应激信号分子与休眠、苏醒
休眠(dormancy)是指肿瘤细胞阻滞在0。/01期,不进 行有丝分裂但处于存活状态,遇到合适的微环境刺激可 进人苏醒(reactivation)%4%。研究表明,肿瘤细胞进入 靶器官后,会进行一段时间的休眠,当微环境合适时,休 眠肿瘤细胞重新苏醒,进行克隆增殖^431。目前认为肿 瘤细胞休眠和苏醒状态转换与p38 MAPK和ERK信号通 路的平衡密切相关,当ERK活性下降,p38 MAPK被激活 时,肿瘤细胞进行休眠;当ERK被激活,而p38 MAPK活性 下降时,肿瘤细胞重新苏醒%〜461。研究表明,UPR信号通 路参与调解肿瘤休眠及苏醒过程"°1。p38 MAPK被激活 后,不仅可以抑制ERK的活性,还可以激活PERK
及 IREla,PERK激活后可以磷酸化NRF2及eIF2a,抑制cyclin D1等周期蛋白的表达,引起细胞周期阻滞在G/G,期
IR Ela激活可引起XBPls的剪切,促进Grp78/BiP、抗凋 亡基因的转录,维持肿瘤细胞存活状态[1°‘4'此外,肿瘤 细胞中ATF6的激活可以活化Rheb及mTOR信号通路,也 是肿瘤细胞维持休眠状态的重要原因|31。不难看出,UPR在维持细胞休眠状态中扮演举足轻重的作用"°]。UPR在肿瘤细胞苏醒中的作用机制仍然不清楚,还需进 —■步研究。
7未来研究方向
虽然目前已有的研究结果指出UPR信号通路可能是 肿瘤转移的有效靶标,但UPR在肿瘤转移中的作用 及分子机制仍需更为深人的研究。主要有以下几个方 面:①UPR在肿瘤EMT及MET中的作用及分子机制需要 进一步明确;②UPR既可以促进细胞生存也可以诱导肿 瘤细胞死亡,在肿瘤转移阶段调控UPR促进生存或导致 死亡的分子开关是什么?该分子开关的时空变化、调节 通路是什么?以及如何正确地使用UPR调节化合物来最 大程度地提高癌症的效果?③UPR如何重塑肿瘤免 疫抑制微环境?和现有免疫手段是否有协同作用?
④UPR可以诱导肿瘤细胞休眠,其是否参与到肿瘤苏醒 过程中?具体分子机制是什么?⑤目前对UPR介导肿瘤 细胞与转移靶器官微环境细胞之间黏附的功能及机制知 之甚少,尚需深人研究。因此,深人
了解内质网应激及 UPR与肿瘤转移之间的关系,对阐明肿瘤转移分子机制、开发肿瘤转移的新靶标具有重要意义。
14四川大学学报(医学版)第52卷
参考文献
[1] RAYMUNDO D P, DOULTSINOS D, GUILLORY X, et al.
Pharmacological targeting of IRE1 in cancer. Trends Cancer, 2020, 6(12): 1018-1030.
[2] L IM IA C M, SAUZAYC, URRA H, ef a/. Emerging roles of the
endoplasmic reticulum associated unfolded protein response in cancer cell migration and invasion. Cancers (Basel), 2019, 11(5): 631.
[3] URRA H, DUFEY E, AVRIL T, et al. Endoplasmic reticulum stress and
the hallmarks of cancer. Trends Cancer, 2016, 2(5): 252-262.
[4] CRAENE B D, BERX G. Regulatory networks defining EMT during
cancer initiation and progression. Nat Rev Cancer, 2013,13(2): 97-110. [5] OAKES S A. Endoplasmic reticulum stress signaling in cancer cells. Am J
Pathol, 2020, 190(5): 934-946.
[6] VALASTYAN S, WEINBERG R A. Tumor metastasis: molecular insights
and evolving paradigms. Cell, 2011, 147(2): 275-292.
[7] SENFT D, RONAI Z A. Adaptive stress responses during tum or
metastasis and dormancy. Trends Cancer, 2016, 2(8): 429-442.
[8] CHAFFER C L, WEINBERG R A. A perspective on cancer cell
metastasis. Science, 2011, 331(6024): 1559-1564.
[9] MASSAGUfi J, OBENAUF A C. Metastatic colonization by circulating
tumour cells. Nature, 2016, 529(7586): 298-306.
[10] HSU S K, CHIU C C, DAHMS H U, et a l Unfolded protein response
(UPR) in survival, dormancy, immunosuppression, metastasis, and treatments of cancer cells. Int J Mol Sci, 2019, 20(10): 2518(2020-12-25].
/10.3390/ijms20102518.
[11] BARTOSZEWSKA S, COLLAWN J F. Unfolded protein response (UPR)
integrated signaling networks determine cell fate during hypoxia. Cell Mol Biol Lett, 2020, 25: 18(2020-12-25]. /10.1186/sll658- 020-00212-1.
[12] VANACKER H, VETTERS J, MOUDOMBI L, et al. Emerging role of
the unfolded protein response in tumor immunosurveillance. Trends Cancer, 2017, 3(7): 491-505.
[13] BRABLETZ T, KALLURI R, NIETO M A, et al. EMT in cancer. Nat Rev
Cancer, 2018, 18(2): 128-134.
[14] SANTAMARlA P G, MAZ〇N M J, ERASO P, et al. UPR: an upstream
signal to EMT induction in cancer. J Clin Med, 2019, 8(5): 624[2020-12- 25]. /10.3390/jc
m8050624.
[15] HAN C C, WAN F S. New insights into the role of endoplasmic
reticulum stress in breast cancer metastasis. J Breast Cancer, 2018, 21(4): 354-362.
[16] LI H, CHEN X, GAO Y, et al. XBP1 induces snail expression to promote
epithelial- to-mesenchymal transition and invasion of breast cancer cells.
Cell Signal, 2015, 27(1): 82-89.
[17] CUEVAS E P, ERASO P, MAZ〇N M J, et al. LOXL2 drives epithelial-
mesenchymal transition via activation of IRE1-XBP1 signalling pathway.
Sci Rep, 2017, 7: 44988[2020-12-25]. /10.1038/srep44988. [18] SHAH P P, DUPRE T V, SISKIND L J, et al.Common cytotoxic
chemotherapeutics induce epithelial-mesenchymal transition (EMT)
downstream of ER stress. Oncotarget, 2017, 8(14): 22625-22639.
[19] CUBILLOS-RUIZ J R, BETTIGOLE S E, GLIMCHER L H. Tumorigenic
and immunosuppressive effects of endoplasmic reticulum stress in cancer.
Cell, 2017, 168(4): 692-706.
[20] GRIVENNIKOV S I, KARIN M. Dangerous liaisons: STAT3 and NF-
kappaB collaboration and crosstalk in cancer. Cytokine Growth Factor
Rev, 2010,21(1): 11-19.
[21] BI M, NACZKI C, KORITZINSKY M, et al.ER stress-regulated
translation increases tolerance to extreme hypoxia and promotes tumor
growth. Embo J, 2005, 24(19): 3470-3481.
[22] DEY S, SAYERS C M, VERGINADIS I I, et al.ATF4-dependent
induction of heme oxygenase 1 prevents anoikis and promotes metastasis.
J Clin Invest, 2015, 125(7): 2592-2608.
[23] NAKATOGAWA H. Autophagic degradation of the endoplasmic
reticulum. Proc Jpn Acad Ser B Phys Biol Sci, 2020, 96(1): 1-9.
[24] MOREL E. Endoplasmic reticulum membrane and contact site dynamics
in autophagy regulation and stress response. Front Cell Dev Biol, 2020, 8:343 [2020-12-25]. /10.3389/fceU.2020.00343.
[25] H0YER-HANSEN M, JAATTELA M. Connecting endoplasm ic
reticulum stress to autophagy by unfolded protein response and calcium.
Cell Death Differ, 2007, 14(9): 1576-1582.
[26] BERNALES S, MCDONALD K L, WALTER P. A u tophagy
counterbalances endoplasmic reticulum expansion during the unfolded
protein response. PLoS Biol, 2006, 4(12): e423[2020-12-25]. doi.
org/10.1371 /journal.pbio.0040423.
[27] B'CHIR W, MAURIN A C, CARRARO V, et al.The eIF2a/ATF4
pathway is essential for stress-induced autophagy gene expression.
Nucleic Acids Res, 2013, 41(16): 7683-7699.
[28] CUBILLOS-RUIZ J R, BETTIGOLE S E, GLIMCHER L H. Molecular
pathways: immunosuppressive roles of IREla-XBPl signaling in dendritic
cells of the tumor microenvironment. Clin Cancer Res, 2016, 22(9):
2121-2126.
[29] SONG M, SANDOVAL T A, CHAE C S, et al. IREla-XBPl controls T
cell function in ovarian cancer by regulating mitochondrial activity.
Nature, 2018, 562(7727): 423-428.
[30] THEVENOT P T, SIERRA R A, RABER P L, et al. The stress-response
sensor chop regulates the function and accumulation of myeloid-derived
suppressor cells in tumors. Immunity, 2014, 41(3): 389-401.
[31] AUFG, JABOUILLEA, GUfiRIT S, ef a/. Inositol-requiring enzyme la
is a key regulator of angiogenesis and invasion in malignant glioma. Proc Natl Acad Sci USA, 2010,107(35): 15553-15558.
[32] LIANG H, XIAO J, ZHOU Z, et al. Hypoxia induces miR-153 through
the IREla-XBPl pathway to fine tune the HIFla/VEGFA axis in breast
cancer angiogenesis. Oncogene, 2018, 37(15): 1961-1975.
[33] CHENX, ILIOPOULOSD, ZHANG Q, ef a/. XBP1 promotes triple
negative breast cancer by controlling the HIFla pathway. Nature, 2014,
508(7494): 103-107.
[34] WANG Y, ALAM G N, NING Y, et al. The unfolded protein response
induces the angiogenic switch in hum an tumor cells through the
第1期周景峰等:内质网应激与肿瘤转移
15
PERK/ATF4 pathway. Cancer Res, 2012, 72(20): 5396-5406.
[35] CHO J, MIN H Y, PEI H, et al. The ATF6-EGF pathway mediates the
awakening of slow-cycling chemoresistant cells and tumor recurrence by stimulating tumor angiogenesis. Cancers (Basel), 2020,12(7): 1772[2020- 12-25]. /10.3390/cancers 12071772.
[36] GHOSH R, LIPSON K L, SARGENT K E, et al. Transcriptional
regulation of VEGF-A by the unfolded protein response pathway. PLoS One, 2010, 5(3): e9575[2020-12-25]. /10.1371/journal. pone.0009575.
[37] URRA H, H ENRIQUEZDR, CANOVAS J, et al. IREla governs
cytoskeleton remodelling and cell migration through a direct interaction with filamin A. Nat Cell Biol, 2018, 20(8): 942-953.
[38] YUANXP, DONGM, LI X, ef a/. GRP78 promotes the invasion of
pancreatic cancer cells by FAK and JNK. Mol Cell Biochem, 2015, 398(1/2): 55-62.
[39] LU X, MU E, WEI Y, et al. VCAM-1 promotes osteolytic expansion of
indolent bone micrometastasis of breast cancer by engaging a4^1-positive osteoclast progenitors. Cancer Cell, 2011, 20(6): 701-714.
[40] XU L Y, ZHANG W J, ZHANG X H, et al. Endoplasmic reticulum
stress in bone metastases. Front Oncol, 2020, 10: 1100[2020-12-25]. doi.Org/10.3389/fonc.2020.01100.
[41] ROBINSON N J, PARKER K A, SCHIEMANN W P. Epigenetic
plasticity in m etastatic dormancy: m echanism s and therapeutic im plications. Ann T ransl Med, 2020, 8(14): 903[2020-12-25]. htttps:///10.21037/atm.2020.02.177.
[42] GIANCOTTI F G. Mechanisms governing metastatic dormancy and
reactivation. Cell, 2013, 155⑷:750-764.
[43] FANG C, KANG Y B. Cellular plasticity in bone metastasis. Bone, 2020:
115693(2020-12-25]. doi.Org/10.1016/j.bone.2020.l 15693.[44] KORENTZELOS D, CLARK A M, WELLS A. A Perspective on
therapeutic pan-resistance in metastatic cancer. Int J Mol Sci, 2020, 21(19): 7304[2020-12-25]. /10.3390/ijms21197304.[45] COLEMAN R E, CROUCHER P I, PADHANI A R, et al. Bone
metastases. Nat Rev Dis Primers, 2020, 6(1): 83[2020-12-25]. /10.1038/s41572-020-00216-3.
[46] FARES J, FARES M Y, KHACHFE H H, et al. Molecular principles of
metastasis: a hallmark of cancer revisited. Signal Transduct Target Ther, 2020, 5(1): 28[2020-12-25]. /10.1038/s41392-020-0134-x.[47] RANGANATHAN A C, OJHA S, KOURTIDIS A, et al. Dual function
of pancreatic endoplasmic reticulum kinase in tumor cell growth arrest and survival. Cancer Res, 2008, 68(9): 3260-3268.
(2020 - 11 - 04收稿,2020 - 12 - 28修回)
编辑汤洁
作者简介
潘景轩,中山大学教授,国家重点研发项目首席科学家,兼任中国药理学会肿瘤药理学专业委员会 和中国抗癌协会抗肿瘤药物专业委员会副主任委员,广东省药理学会肿瘤药理学专业委员会主任委 员,中国
病理生理学会肿瘤专业委员会常委,中国生理学会血液专业委员会委员,中国病理生理学会实 验血液学会委员,中国细胞生物学学会肿瘤细胞生物学专业委员会委员,中国医师协会精准医学专业 委员会委员,中国民族卫生协会临床医学分会常委。曾在美国德克萨斯大学MD Andwson Cancer
Center 工作8年,2006年回国任中山医学院教授、博士生导师。主要从事肿瘤靶向和肿瘤药理学
研究,研究领域集中在肿瘤耐药和白血病干细胞干性的调控机制及其干预。已发表学术论文76篇,主
持承担包括国家重点研发计划、国家自然科学基金重点项目等在内的多项国家级课题。曾多次担任国家自然科学基金委的 学科评议组专家。目前担任Mo / Omcer #国际学术期刊副主编,r /imwcwto
等国际学术杂志编委。
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论