Thomas Kuhn (1962)
The Structure of Scientific Revolutions
Source: The Structure of Scientific Revolutions (1962) publ. University of
Chicago Press, 1962. One chapter plus one postscript reproduced here. IX. The Nature and Necessity of Scientific Revolutions
These remarks permit us at last to consider the problems that provide this essay with its title. What are scientific revolutions, and what is their function in scientific development? Much of the answer to these questions has been anticipated in earlier sections. In particular, the preceding discussion has indicated that scientific revolutions are here taken to be those non-cumulative developmental episodes in which an older paradigm is replaced in whole or in part by an incompatible new one. There is more to be said, how
ever, and an essential part of it can be introduced by asking one further question. Why should a change of paradigm be called a revolution? In the face of the vast and essential differences between political and scientific development, what parallelism can justify the metaphor that finds revolutions in both?
One aspect of the parallelism must already be apparent. Political revolutions are inaugurated by a growing sense, often restricted to a segment of the political community, that existing institutions have ceased adequately to meet the problems posed by an environment that they have in part created. In much the same way, scientific revolutions are inaugurated by a growing sense, again often restricted to a narrow subdivision of the scientific community, that an existing paradigm has ceased to function adequately in the exploration of an aspect of nature to which that paradigm itself had previously led the way. In both political and scientific development the sense of malfunction that can lead to crisis is prerequisite to revolution. Furthermore, though it admittedly strains the metaphor, that parallelism holds not only for the major paradigm changes, like those attributable to Copernicus and Lavoisier, but also for the far smaller ones associated with the assimilation of a new sort of phenomenon, like oxygen or X-rays. Scientific revolutions, as we noted at the end of Section V, need seem revolutionary only to those whose paradigms are affected
by them. To outsiders they may, like the Balkan revolutions of the early twentieth century, seem normal parts of the developmental process. Astronomers, for example, could accept X-rays as a mere addition to knowledge, for their paradigms were unaffected by the existence of the new radiation. But for men like Kelvin, Crookes, and Roentgen, whose research dealt with radiation theory or with cathode ray tubes, the emergence of X-rays necessarily violated one paradigm as it created another. That is why these rays could be discovered only through something's first going wrong with normal research.
This genetic aspect of the parallel between political and scientific development should no longer be open to doubt. The parallel has, however, a second and more profound aspect upon which the significance of the first depends. Political revolutions aim to change political institutions in ways that those institutions themselves prohibit. Their success therefore necessitates the partial relinquishment of one set of institutions in favour of another, and in the interim, society is not fully governed by institutions at all. Initially it is crisis alone that attenuates the role of political institutions as we have already seen it attenuate the role of paradigms. In increasing numbers individuals become increasingly estranged from political life and behave more and more eccentrically within it. Then, as the crisis deepens, many of these individuals commit themselves to some concrete proposal for the reconstruction of society in a new institutional framework. At that point the society is divided into comp
eting camps or parties, one seeking to defend the old institutional constellation, the others seeking to institute some new one. And, once that polarisation has occurred, political recourse fails. Because they differ about the institutional matrix within which political change is to be achieved and evaluated, because they acknowledge no supra-institutional framework for the adjudication of revolutionary difference, the parties to a revolutionary conflict must finally resort to the techniques of mass persuasion, often including force. Though revolutions have had a vital role in the evolution of political institutions, that role depends upon their being partially extrapolitical or extrainstitutional events. The remainder of this essay aims to demonstrate that the historical study of paradigm change reveals very similar characteristics in the evolution of the sciences. Like the choice between competing political institutions, that between competing paradigms proves to be a choice between incompatible modes of community life. Because it has that character, the choice is not and cannot be determined merely by the evaluative procedures characteristic of normal science, for these depend in part upon a particular paradigm, and that paradigm is at issue. When paradigms enter, as they must, into a debate about paradigm choice, their role is necessarily circular. Each group uses its own paradigm to argue in that paradigm's defence.
The resulting circularity does not, of course, make the arguments wrong or even
ineffectual. The man who premises a paradigm when arguing in its defence can nonetheless provide a clear exhibit of what scientific practice will be like for those who adopt the new view of nature. That exhibit can be immensely persuasive, often compellingly so. Yet, whatever its force, the status of the circular argument is only that of persuasion. It cannot be made logically or even probabilistically compelling for those who refuse to step into the circle. The premises and values shared by the two parties to a debate over paradigms are not sufficiently extensive for that. As in political revolutions, so in paradigm choice - there is no standard higher than the assent of the relevant community. To discover how scientific revolutions are effected, we shall therefore have to examine not only the impact of nature and of logic, but also the techniques of persuasive argumentation effective within the quite special groups that constitute the community of scientists.
To discover why this issue of paradigm choice can never be unequivocally settled by logic and experiment alone, we must shortly examine the nature of the differences that separate the proponents of a traditional paradigm from their revolutionary successors. That examination is the principal object of this section and the next. We have, however, already noted numerous examples of such differences, and no one will doubt that history can supply many others. What is more likely to be doubted than their existence - and what must therefore be considered first - is that such examples provide essential infor
mation about the nature of science. Granting that paradigm rejection has been a historic fact, does it illuminate more than human credulity and confusion? Are there intrinsic reasons why the assimilation of either a new sort of phenomenon or a new scientific theory must demand the rejection of an older paradigm?
First notice that if there are such reasons, they do not derive from the logical structure of scientific knowledge. In principle, a new phenomenon might emerge without reflecting destructively upon any part of past scientific practice. Though discovering life on the moon would today be destructive of existing paradigms (these tell us things about the moon that seem incompatible with life's existence there), discovering life in some less well-known part of the galaxy would not. By the same token, a new theory does not have to conflict with any of its predecessors. It might deal exclusively with phenomena not previously known, as the quantum theory deals (but, significantly, not exclusively) with subatomic phenomena unknown before the twentieth century. Or again, the new theory might be simply a higher level theory than those known before, one that linked together a whole group of lower level theories without substantially changing any. Today, the theory of energy conservation provides just such links between dynamics, chemistry, electricity, optics, thermal theory, and so on. Still other compatible relationships between old and new theories can be conceived. Any and all of them might be exemplified by the historical
process through which science has developed. If they were, scientific development would be genuinely cumulative. New sorts of phenomena would simply disclose order in an aspect of nature where none had been seen before. In the evolution of science new knowledge would replace ignorance rather than replace knowledge of another and incompatible sort.
Of course, science (or some other enterprise, perhaps less effective) might have developed in that fully cumulative manner. Many people have believed that it did so, and most still seem to suppose that cumulation is at least the ideal that historical development would display if only it had not so often been distorted by human idiosyncrasy. There are important reasons for that belief In Section X we shall discover how closely the view of science-as-cumulation is entangled with a dominant epistemology that takes knowledge to be a construction placed directly upon raw sense data by the mind. And in Section XI we shall examine the strong support provided to the same historiographic schema by the techniques of effective science pedagogy. Nevertheless, despite the immense plausibility of that ideal image, there is increasing reason to wonder whether it can possibly be an image of science. After the pre-paradigm period the assimilation of all new theories and of almost all new sorts of phenomena has in fact demanded the destruction of a prior paradigm and a consequent conflict between competing schools of scientific thought. Cumulative acquisition of unanticipated novelt
ies proves to be an almost non-existent exception to the rule of scientific development. The man who takes historic fact seriously must suspect that science does not tend toward the ideal that our image of its cumulativeness has suggested. Perhaps it is another sort of enterprise.
If, however, resistant facts can carry us that far, then a second look at the ground we have already covered may suggest that cumulative acquisition of novelty is not only rare in fact but improbable in principle. Normal research, which is cumulative, owes its success to the ability of scientists regularly to select problems that can be solved with conceptual and instrumental techniques close to those already in existence. (That is why an excessive concern with useful problems, regardless of their relation to existing knowledge and technique, can so easily inhibit scientific development.) The man who is striving to solve a problem defined by existing knowledge and technique is not, however, just looking around. He knows what he wants to achieve, and he designs his instruments and directs his thoughts accordingly. Unanticipated novelty, the new discovery, can emerge only to the extent that his anticipations about nature and his instruments prove wrong. Often the importance of the resulting discovery will itself be proportional to the extent and stubbornness of the anomaly that foreshadowed it. Obviously, then, there must be a conflict between the paradigm that discloses anomaly and the one that later renders the anomaly law-like. The examples of discovery through paradigm destruction examined in Section VI did not confront us with
mere historical accident. There is no other effective way in which discoveries might be generated.
The same argument applies even more clearly to the invention of new theories. There are, in principle, only three types of phenomena about which a new theory might be developed. The first consists of phenomena already well explained by existing paradigms, and these seldom provide either motive or point of departure for theory construction. When they do, as with the three famous anticipations discussed at the end of Section VII, the theories that result are seldom accepted, because nature provides no ground for discrimination. A second class of phenomena consists of those whose nature is indicated by existing paradigms but whose details can be understood only through further theory articulation. These are the phenomena to which scientists direct their research much of the time, but that research aims at the articulation of existing paradigms rather than at the invention of new ones. Only when these attempts at articulation fail do scientists encounter the third type of phenomena, the recognised anomalies whose characteristic feature is their stubborn refusal to be assimilated to existing paradigms. This type alone gives rise to new theories. Paradigms provide all phenomena except anomalies with a theory-determined place in the scientist's field of vision.
But if new theories are called forth to resolve anomalies in the relation of an existing theory to nature, then the successful new theory must somewhere permit predictions that are different from those derive
sort of there是什么意思d from its predecessor. That difference could not occur if the two were logically compatible. In the process of being assimilated, the second must displace the first. Even a theory like energy conservation, which today seems a logical superstructure that relates to nature only through independently established theories, did not develop historically without paradigm destruction. Instead, it emerged from a crisis in which an essential ingredient was the incompatibility between Newtonian dynamics and some recently formulated consequences of the caloric theory of heat. Only after the caloric theory had been rejected could energy conservation become part of science. And only after it had been part of science for some time could it come to seem a theory of a logically higher type, one not in conflict with its predecessors. It is hard to see how new theories could arise without these destructive changes in beliefs about nature. Though logical inclusiveness remains a permissible view of the relation between successive scientific theories, it is a historical implausibility.
Logical Positivism
A century ago it would, I think, have been possible to let the case for the necessity of

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。