deep encoder decoder的pytorch 例子
以下是一个使用PyTorch实现的Deep Encoder-Decoder模型的例子:
```python
import torch
as nn
# 定义Encoder模型
class Encoder(nn.Module):
    def __init__(self, input_size, hidden_size):
        super(Encoder, self).__init__()
        self.hidden_size = hidden_size
        bedding = nn.Embedding(input_size, hidden_size)
        u = nn.GRU(hidden_size, hidden_size)
    def forward(self, input_seq, hidden):
        embedded = bedding(input_seq)
        output_seq, hidden = u(embedded, hidden)
        return output_seq, hidden
    def init_hidden(self, batch_size):
        s(1, batch_size, self.hidden_size)
# 定义Decoder模型
class Decoder(nn.Module):
    def __init__(self, hidden_size, output_size):
        super(Decoder, self).__init__()
        self.hidden_size = hidden_size
        bedding = nn.Embedding(output_size, hidden_size)
        u = nn.GRU(hidden_size, hidden_size)
        self.out = nn.Linear(hidden_size, output_size)
        self.softmax = nn.LogSoftmax(dim=2)
    def forward(self, input_seq, hidden):
        output_seq = bedding(input_seq)
        output_seq = lu(output_seq)
        output_seq, hidden = u(output_seq, hidden)
        output_seq = self.softmax(self.out(output_seq))
        return output_seq, hidden
# 定义DeepEncoderDecoder模型
class DeepEncoderDecoder(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(DeepEncoderDecoder, self).__init__()
        der = Encoder(input_size, hidden_size)
        self.decoder = Decoder(hidden_size, output_size)
    def forward(self, input_seq, target_seq):
        batch_size = input_seq.size(1)
        encoder_hidden = der.init_hidden(batch_size)
        encoder_output_seq, encoder_hidden = der(input_seq, encoder_hidden)
   
output的反义词
        decoder_hidden = encoder_hidden
        decoder_output_seq, _ = self.decoder(target_seq, decoder_hidden)
        return decoder_output_seq
# 测试例子
input_size = 10
hidden_size = 50
output_size = 10
# 创建模型并随机生成输入样本
model = DeepEncoderDecoder(input_size, hidden_size, output_size)
input_seq = sor([[1, 2, 3], [4, 5, 6]])  # 输入样本
target_seq = sor([[7, 8, 9], [1, 2, 3]])  # 目标样本
output_seq = model(input_seq, target_seq)
print(output_seq)
```
以上代码定义了一个Deep Encoder-Decoder模型,其中Encoder模型使用GRU对输入进行编码,Decoder模型使用GRU对输出进行解码,并使用线性层和softmax函数生成预测结果。然后使用DeepEncoderDecoder模型对输入样本进行处理并生成输出序列。

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。