AWR报告详细分析
AWR 是 Oracle 10g 版本 推出的新特性, 全称叫Automatic Workload Repository-自动负载信息库, AWR 是通过对比两次快,照(snapshot)收集到的统计信息,来生成报表数据,生成的报表包括多个部分。
WORKLOAD REPOSITORY report for
DB Name | DB Id | Instance | Inst num | Release | RAC | Host block truncated |
ICCI | 1314098396 | ICCI1 | 1 | 10.2.0.3.0 | YES | HPGICCI1 |
Snap Id | Snap Time | Sessions | Cursors/Session | |
Begin Snap: | 2678 | 25-Dec-08 14:04:50 | 24 | 1.5 |
End Snap: | 2680 | 25-Dec-08 15:23:37 | 26 | 1.5 |
Elapsed: | 78.79 (mins) | |||
DB Time: | 11.05 (mins) | |||
DB Time不包括Oracle后台进程消耗的时间。如果DB Time远远小于Elapsed时间,说明数据库比较空闲。
db time= cpu time + wait time(不包含空闲等待) (非后台进程)
说白了就是db time就是记录的服务器花在数据库运算(非后台进程)和等待(非空闲等待)上的时间
DB time = cpu time + all of nonidle wait event time
在79分钟里(其间收集了3次快照数据),数据库耗时11分钟,RDA数据中显示系统有8个逻辑CPU(4个物理CPU),平均每个CPU耗时1.4分钟,CPU利用率只有大约2%(1.4/79)。说明系统压力非常小。
列出下面这两个来做解释:
Report A:
Snap Id Snap Time Sessions Curs/Sess
--------- ------------------- -------- ---------
Begin Snap: 4610 24-Jul-08 22:00:54 68 19.1
End Snap: 4612 24-Jul-08 23:00:25 17 1.7
Elapsed: 59.51 (mins)
DB Time: 466.37 (mins)
Report B:
Snap Id Snap Time Sessions Curs/Sess
--------- ------------------- -------- ---------
Begin Snap: 3098 13-Nov-07 21:00:37 39 13.6
End Snap: 3102 13-Nov-07 22:00:15 40 16.4
Elapsed: 59.63 (mins)
DB Time: 19.49 (mins)
服务器是AIX的系统,4个双核cpu,共8个核:
/sbin> bindprocessor -q
The available processors are: 0 1 2 3 4 5 6 7
先说Report A,在snapshot间隔中,总共约60分钟,cpu就共有60*8=480分钟,DB time为466.37分钟,则:
cpu花费了466.37分钟在处理Oralce非空闲等待和运算上(比方逻辑读)
也就是说cpu有 466.37/480*100% 花费在处理Oracle的操作上,这还不包括后台进程
看Report B,总共约60分钟,cpu有 19.49/480*100% 花费在处理Oracle的操作上
很显然,2中服务器的平均负载很低。
从awr report的Elapsed time和DB Time就能大概了解db的负载。
可是对于批量系统,数据库的工作负载总是集中在一段时间内。如果快照周期不在这一段时间内,或者快照周期跨度太长而包含了大量的数据库空闲时间,所得出的分析结果是没有意义的。这也说明选择分析时间段很关键,要选择能够代表性能问题的时间段。
Report Summary
Cache Sizes
Begin | End | |||
Buffer Cache: | 3,344M | 3,344M | Std Block Size: | 8K |
Shared Pool Size: | 704M | 704M | Log Buffer: | 14,352K |
显示SGA中每个区域的大小(在AMM改变它们之后),可用来与初始参数值比较。
shared pool主要包括library cache和dictionary cache。library cache用来存储最近解析(或编译)后SQL、PL/SQL和Java classes等。library cache用来存储最近引用的数据字典。发生在library cache或dictionary cache的cache miss代价要比发生在buffer cache的代价高得多。因此shared pool的设置要确保最近使用的数据都能被cache。
Load Profile
Per Second | Per Transaction | |
Redo size: | 918,805.72 | 775,912.72 |
Logical reads: | 3,521.77 | 2,974.06 |
Block changes: | 1,817.95 | 1,535.22 |
Physical reads: | 68.26 | 57.64 |
Physical writes: | 362.59 | 306.20 |
User calls: | 326.69 | 275.88 |
Parses: | 38.66 | 32.65 |
Hard parses: | 0.03 | 0.03 |
Sorts: | 0.61 | 0.51 |
Logons: | 0.01 | 0.01 |
Executes: | 354.34 | 299.23 |
Transactions: | 1.18 | |
% Blocks changed per Read: | 51.62 | Recursive Call %: | 51.72 |
Rollback per transaction %: | 85.49 | Rows per Sort: | >### |
显示数据库负载概况,将之与基线数据比较才具有更多的意义,如果每秒或每事务的负载变化不大,说明应用运行比较稳定。单个的报告数据只说明应用的负载情况,绝大多数据并没有一个所谓“正确”的值,然而Logons大于每秒1~2个、Hard parses大于每秒100、全部parses超过每秒300表明可能有争用问题。
Redo size:每秒产生的日志大小(单位字节),可标志数据变更频率, 数据库任务的繁重与否。Logical reads:每秒/每事务逻辑读的块数.平决每秒产生的逻辑读的block数。Logical Reads= Consistent Gets + DB Block Gets
Block changes:每秒/每事务修改的块数
Physical reads:每秒/每事务物理读的块数
Physical writes:每秒/每事务物理写的块数
User calls:每秒/每事务用户call次数
Parses:SQL解析的次数.每秒解析次数,包括fast parse,soft parse和hard parse三种数量
的综合。 软解析每秒超过300次意味着你的"应用程序"效率不高,调整session_cursor_cache。在这里,fast parse指的是直接在PGA中命中的情况(设置了session_cached_cursors=n);soft parse是指在shared pool中命中的情形;hard parse则是指都不命中的情况。
Hard parses:其中硬解析的次数,硬解析太多,说明SQL重用率不高。每秒产生的硬解析次数, 每秒超过100次,就可能说明你绑定使用的不好,也可能是共享池设置不合理。这时候可以启用参数cursor_sharing=similar|force,该参数默认值为exact。但该参数设置为similar时,存在bug,可能导致执行计划的不优。
Sorts:每秒/每事务的排序次数
Logons:每秒/每事务登录的次数
Executes:每秒/每事务SQL执行次数
Transactions:每秒事务数.每秒产生的事务数,反映数据库任务繁重与否。
Blocks changed per Read:表示逻辑读用于修改数据块的比例.在每一次逻辑读中更改的块的百分比。
Recursive Call:递归调用占所有操作的比率.递归调用的百分比,如果有很多PL/SQL,那么这个值就会比较高。
Rollback per transaction:每事务的回滚率.看回滚率是不是很高,因为回滚很耗资源 ,如果回滚率过高,可能说明你的数据库经历了太多的无效操作 ,过多的回滚可能还会带来Undo Block的竞争 该参数计算公式如下: Round(User rollbacks / (user commits + user rollbacks) ,4)* 100% 。
Rows per Sort:每次排序的行数
注:
Oracle的硬解析和软解析
提到软解析(soft prase)和硬解析(hard prase),就不能不说一下Oracle对sql的处理过程。当
你发出一条sql语句交付Oracle,在执行和获取结果前,Oracle对此sql将进行几个步骤的处理过程:
1、语法检查(syntax check)
检查此sql的拼写是否语法。
2、语义检查(semantic check)
诸如检查sql语句中的访问对象是否存在及该用户是否具备相应的权限。
3、对sql语句进行解析(prase)
利用内部算法对sql进行解析,生成解析树(parse tree)及执行计划(execution plan)。
4、执行sql,返回结果(execute and return)
其中,软、硬解析就发生在第三个过程里。
Oracle利用内部的hash算法来取得该sql的hash值,然后在library cache里查是否存在该h
ash值;
假设存在,则将此sql与cache中的进行比较;
假设“相同”,就将利用已有的解析树与执行计划,而省略了优化器的相关工作。这也就是软解析的过程。
诚然,如果上面的2个假设中任有一个不成立,那么优化器都将进行创建解析树、生成执行计划的动作。这个过程就叫硬解析。
创建解析树、生成执行计划对于sql的执行来说是开销昂贵的动作,所以,应当极力避免硬解析,尽量使用软解析。
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论