【5】matplotlib绘制光滑的曲线来拟合散点图
matplotlib绘制光滑的曲线来拟合散点图
基本思想
其实就是到原来散点图x和y的对应关系,然后通过⼤量的采样点来拟合来近似曲线。
1.法1
这个⽅法⽹上有很多blog,但是问题是它使⽤的函数在新版的matplotlib⾥已经没了(可能换名字了,我也没查)。不过还是转载过来⼀下。转⾃:
使⽤scipy库可以拟合曲线.
没拟合的图:
import matplotlib.pyplot as plt
linspace numpyimport numpy as np
T = np.array([6,7,8,9,10,11,12])
power = np.array([1.53E+03,5.92E+02,2.04E+02,7.24E+01,2.72E+01,1.10E+01,4.70E+00])
plt.plot(T,power)
plt.show()
import matplotlib.pyplot as plt
import numpy as np
T = np.array([6,7,8,9,10,11,12])
power = np.array([1.53E+03,5.92E+02,2.04E+02,7.24E+01,2.72E+01,1.10E+01,4.70E+00])
from scipy.interpolate import spline  # 如果你的matplotlib版本较新,这个会报错
xnew = np.linspace(T.min(),T.max(),300)#300 represents number of points to make between T.min and T.max
power_smooth = spline(T,power,xnew)
plt.plot(xnew,power_smooth)
plt.show()
2.法2
使⽤:scipy.interpolate.interp1d
import numpy as np
from scipy.interpolate import interp1d
import matplotlib.pyplot as plt
x = np.array([6,7,8,9,10,11,12])
y = np.array([1.53E+03,5.92E+02,2.04E+02,7.24E+01,2.72E+01,1.10E+01,4.70E+00]) xnew = np.linspace(x.min(),x.max(),300)
func = interp1d(x,y,kind='cubic')
ynew = func(xnew)
plt.plot(xnew,ynew)# 此时即为平滑曲线

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。