复几何课程详细信息
课程号
00102934
学分
3
英文名称
complex geometry
先修课程
复变函数, 微分几何
中文简介
复几何是门丰富,技术性很强的几何与复分析交叉的数学分支。像经典的黎曼一致化定理,是一维复几何中非常深刻的理论。对高维的复流形, 复几何的研究问题就很广了。好多问题与流形的曲率,代数不变量有关。著名的问题, 有凯勒-爱因斯坦度量的存在性,丘成桐的一致化猜测,与数学物理有关的玄理论,还有各种模空间理论,等等。牵及到的研究工具,有复分析中的位势理论,构造全纯截面的Hormander的 L^2,代数几何中的Hartshorne消奇点理论, Mori的极小模型,
方程中的复Monge-Ampere方程的弱解和正则性理论,复几何中的Hodge分解理论,模空间中的Kodaira-Kuranish形变理论和几何的Gromov-Hausdroff 紧性理论,等等。本门课程,主要介绍一些研究复几何的基本知识, 像有关复分析和方程的位势理论和复Monge-Ampere方程的弱解和正则性理论等, 和目前一些人们非常关心的复几何中有关问题。是门高年级本科生自选的专业课程。
英文简介
Complex geometry is one of important  branches in differential geometry with  a long research history.  As we know,  the beautiful   Riemann uniformization  theorem is a fundamental deep result in Riemannian surface theory.  In higher dimensions,  the research in Complex geometry becomes more and more rich and hard.    There are many interesting problems remaining  to study in the future,  such as the existence problem of Kaehler-Einstein metrics,
Yau's  uniformization  conjecture  for complete  complex manifolds with positive bisectional curvature,  Mirror symmetry in string theory,  deformation and modulo spaces of Calabi-Yau manifolds,  etc.. Some problems are from the motivation of mathematics  its self as well as from other fields, such as algebraic geometry,  mathematical physics, etc..
There are many fundamental tools has been established by mathematicians in past half centrury. The potentials theory for plurisubharmonic functions, Hormander L^2-theory for holomorphic sections,  Hartshorne desingularity theory in algebraic geometry, weak solution and regularity theory in complex Monge-Ampere equation, Mori's minimal model theory,  Hodge decomposition theorem, Kodaira-Kuranish deformation for complex structures, etc.,  those  beautiful theorems or theories are often used in the study of complex geometry. In this course, we will mainly introduce some fundamental theories, such as the potentials theory for plurisubharmonic functions,  the weak solution and regularity theory in complex Monge-Ampere equation, etc..  Welcome all senior students with some knowledge in complex analysis with one variable, differential geometry.
开课院系
数学科学学院
通选课领域
 
是否属于艺术与美育
平台课性质
 
平台课类型
 
授课语言
中英双语
教材
无;
参考书
教学大纲
课程的基本内容包括:
正则化英文1)  复Monge-Ampere 测度和复Monge-Ampere方程的弱解
2) Bedford-Perron方法和弱解存在性
3) 容度理论
4)  Kolodziej 内部C^0-估计
5) Bedfor-Taylor 的Dirichlet 问题的正则性
6)  Calabi-Yau的C^2整体估计
1)  复Monge-Ampere 测度和复Monge-Ampere方程的弱解,  3x3学时
2) Bedford-Perron方法和弱解存在性, 2x3学时
3) 容度理论,    2x3学时
4)  Kolodziej 内部C^0-估计,  3x3学时
5) Bedfor-Taylor 的Dirichlet 问题的正则性,3x3学时
6)  Calabi-Yau的C^2整体估计,  3x3学时
教学方法: 书写
参考书: The complex Monge-Ampere equation and Pluripotential theory,  Kolodziej,  Memoirs of AMS, n. 840, 2005.
考试
教学评估
朱小华:

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。