python画roc曲线需要什么数据_pythonsklearn画ROC曲线preface:最近《⽣物信息学》多次谈到AUC,ROC这两个指标,正在做的project,要求画ROC曲线,sklearn⾥⾯有相应的函数,故学习学习。
AUC:
ROC:
具体使⽤参考sklearn:
# -*- coding: utf-8 -*-
"""
Created on Sun Apr 19 08:57:13 2015
@author: shifeng
"""
print(__doc__)
import numpy as np
from scipy import interp
import matplotlib.pyplot as plt
from sklearn import svm, datasets
ics import roc_curve, auc
ss_validation import StratifiedKFold
>>>>>>>>>>>>>>>####
# Data IO and generation,导⼊iris数据,做数据准备
# import some data to play with
iris = datasets.load_iris()
X = iris.data
y = iris.target
X, y = X[y != 2], y[y != 2]
n_samples, n_features = X.shape
# Add noisy features
random_state = np.random.RandomState(0)
X = np.c_[X, random_state.randn(n_samples, 200 * n_features)]
>>>>>>>>>>>>>>>####
# Classification and ROC analysis
#分类,做ROC分析
# Run classifier with cross-validation and plot ROC curves
#使⽤6折交叉验证,并且画ROC曲线
cv = StratifiedKFold(y, n_folds=6)
classifier = svm.SVC(kernel='linear', probability=True,linspace函数python
random_state=random_state)
mean_tpr = 0.0
mean_fpr = np.linspace(0, 1, 100)
all_tpr = []
for i, (train, test) in enumerate(cv):
#通过训练数据,使⽤svm线性核建⽴模型,并对测试集进⾏测试,求出预测得分
probas_ = classifier.fit(X[train], y[train]).predict_proba(X[test])
# print set(y[train]) #set([0,1]) 即label有两个类别
# print len(X[train]),len(X[test]) #训练集有84个,测试集有16个
# print "++",probas_ #predict_proba()函数输出的是测试集在lael各类别上的置信度,
# #在哪个类别上的置信度⾼,则分为哪类
# Compute ROC curve and area the curve
#通过roc_curve()函数,求出fpr和tpr,以及阈值
fpr, tpr, thresholds = roc_curve(y[test], probas_[:, 1])
mean_tpr += interp(mean_fpr, fpr, tpr)#对mean_tpr在mean_fpr处进⾏插值,通过scipy包调⽤interp()函数mean_tpr[0] = 0.0 #初始处为0
roc_auc = auc(fpr, tpr)
#画图,只需要plt.plot(fpr,tpr),变量roc_auc只是记录auc的值,通过auc()函数能计算出来
plt.plot(fpr, tpr, lw=1, label='ROC fold %d (area = %0.2f)' % (i, roc_auc))
#画对⾓线
plt.plot([0, 1], [0, 1], '--', color=(0.6, 0.6, 0.6), label='Luck')
mean_tpr /= len(cv) #在mean_fpr100个点,每个点处插值插值多次取平均
mean_tpr[-1] = 1.0 #坐标最后⼀个点为(1,1)
mean_auc = auc(mean_fpr, mean_tpr)#计算平均AUC值
#画平均ROC曲线
#print mean_fpr,len(mean_fpr)
#print mean_tpr
plt.plot(mean_fpr, mean_tpr, 'k--',
label='Mean ROC (area = %0.2f)' % mean_auc, lw=2)
plt.xlim([-0.05, 1.05])
plt.ylim([-0.05, 1.05])
plt.xlabel('False Positive Rate')

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。

发表评论