最小二乘偏移研究现状及发展趋势
杨勤勇;段心标
【摘 要】地震勘探的核心目标是尽可能定量地 、精确地描述油气藏,地震波成像由定位反射(散射)点位置发展到当前的估计(角度)反射系数是地震勘探的核心需求.一般地,逆时偏移是复杂介质成像最精确的方法,最小二乘偏移成像是估计(角度)反射系数的理想选择.最小二乘偏移成像基于线性反演理论框架,理论上能够消除采集照明不佳的影响 、均衡成像振幅以及提高成像分辨率.然而,该理论优势并没有被转化成预期的实用效果,最小二乘偏移技术的生产应用仍然处于试验探索阶段,不能大规模推广应用.在对国内外最小二乘偏移成像技术进行全面调研的基础上,介绍了该技术的方法原理,指明了该技术的理论优势,分析了数据域迭代反演算法和成像域非迭代反演算法两种最小二乘偏移成像技术的特点,认为最小二乘偏移成像技术至今尚未规模化应用于生产的原因在于:① 背景速度的精度不能满足线性反演成像问题的假设条件;②Born近似正演算子不能很好地模拟实际观测数据中的一次反(散)射波;③ 噪声不满足高斯假设条件;④ 子波未知增加了模拟数据的误差;⑤ 计算量大等.最后指出,合理的数据匹配技巧 、合适的正则化技术及近似计算Hessian逆矩阵是未来最小二乘偏移技术应用研究的方向,长期看应该将最小二乘偏移成像融入到全波形反演(FWI)中.
【期刊名称】《石油物探》
【年(卷),期】2018(057)006
【总页数】8页(P795-802)
【关键词】线性化反演;最小二乘偏移;反演成像;研究现状;应用瓶颈
【作 者】杨勤勇;段心标
【作者单位】中国石油化工股份有限公司石油物探技术研究院 ,江苏南京 211103;中国石油化工股份有限公司石油物探技术研究院 ,江苏南京 211103
【正文语种】中 文
【中图分类】P631
地震偏移成像历经叠后时间偏移、叠后深度偏移、叠前时间偏移、叠前深度偏移几个发展阶段,对逐渐复杂的地下构造成像发挥着越来越重要的作用。特别是基于双程波方程的逆时偏移
[1-6],能够描述地下反射界面的空间位置和几何结构,为精细地质构造解释和井位落实提供了可靠的资料。但随着地震勘探的不断深入,地层岩性油气藏占比越来越大,以构造落实为主要目标的偏移成像技术已不能很好地满足勘探需求,能够估计储层弹性参数并借助于岩石物理进行(半)定量储层描述的地震反演成像技术受到越来越多学者的关注。20世纪80年代,TARANTOLA[7]基于Bayes估计理论,建立了一套时间域地震波场反演理论框架,由观测地震数据直接反演地下介质弹性参数,将波动方程作为观测数据的预测器,求得使预测数据与观测数据的总误差最小的参数模型,并作为地下介质参数的估计值。FWI是典型的非线性反演问题,由于非线性问题求解极端困难,因此普遍将FWI分解成线性化的层析成像加线性化的最小二乘偏移成像,前者的主要目标是建立尽可能准确的背景速度模型,后者的主要目标是估计(角度)反射系数。基于最小二乘反演成像的理论优点,许多学者开展了最小二乘偏移成像方法研究[8-21]。LEBRAS等[8]、LAMBARE等[9]提出了线性迭代反演方法和最小二乘偏移思想;COLE等[10]、NEMETH等[11]实现了最小二乘kirchhoff偏移地震成像方法;TANG[12]提出了一种加速最小二乘偏移效率的编码方法;DAI等[13]提出了一种基于融合解码算子的混叠数据最小二乘偏移方法。目前,基于线性反演理论框架的最小二乘偏移研究主要集中在三个方面:①近似求取Hessian逆矩阵,譬如基于水平层状介质假设,用射线理论计算格林函数,构建对
角Hessian矩阵并作为反褶积算子对偏移结果进行处理[22-23];由初始偏移结果和再偏移结果估计非稳相滤波器来近似Hessian矩阵的逆,将滤波器作用于初始偏移结果提高成像结果的质量[24]。②正则化(或预条件)算子的构建[25-26],采用合适的正则化(或预条件)算子保证反演过程稳定,改善反演效果,有效提高反演的收敛速度。③将最小二乘偏移分为数据域方法和成像域方法两种,数据域反演通过多次迭代使得预测数据与观测数据之间的残差最小[27-30],这类方法不需要显式计算Hessian矩阵,只需要构建一对互为共轭的正演算子和偏移算子;成像域反演是近似求解线性反演问题的法方程[31-32],这类方法需要显式计算(部分)Hessian矩阵,能够进行面向目标的最小二乘偏移。
从求解线性问题法方程的角度看,最小二乘偏移相当于对常规偏移结果作用一个Hessian逆矩阵算子,可以降低或者去除由于照明不均或者存在采集脚印所导致的偏移假象,校正偏移结果中存在的振幅误差,以及提高地震成像的分辨率。虽然最小二乘偏移理论优势明显,但在实际应用中明显存在一些问题从而影响了最小二乘偏移成像的效果[33-36]。如经典最小二乘偏移采用了迭代反演算法,通过匹配观测数据与预测数据的误差收敛到一个稳定的成像结果估计值很困难。最小二乘偏移迭代算法计算量巨大,要想获得较为理想的成像结果需要花费目前生产难以承受的计算代价。为了解决上述问题,近年来发展了许多优化算法,如正则化、预条件等,
成像域非迭代最小二乘偏移也受到更多的重视并取得了一定的应用效果。
本文首先介绍最小二乘偏移的方法原理和理论优势,总结了当前国内外最小二乘偏移的研究现状,然后讨论了目前最小二乘偏移应用中仍然存在的瓶颈问题和一些应对方案,最后对最小二乘偏移的发展趋势和研究方向进行了展望。
1 最小二乘偏移原理及优势
依据Bayes决策理论,地球物理反演问题都可以描述为寻使观测数据与预测数据之间的误差达到最小的那一组模型参数,在数学上可以归结为一个最优化问题。在线性反演框架下,最小二乘偏移是要到一个最优的偏移成像结果m,使得观测数据与预测数据的2范数误差最小。目标函数定义为:
(1)
式中,dobs是实际观测数据,dcal为由成像值m和正演算子L计算的预测数据。
要使目标函数达到最小值,必须令其梯度为零,则有如下法方程:
(2)
进而有成像结果的估计值:
(3)
式中,LTL为Hessian矩阵,可用H表示,LTdobs是对观测数据进行常规偏移成像,结果用可m0表示,则有
(4)
(4)式表明,最小二乘偏移是Hessian矩阵的逆H-1作用于常规偏移成像。最小二乘偏移中,波场算子L可以是Kirchhoff积分算子,也可以是单程波算子或双程波算子,分别对应于最小二乘Kirchhoff偏移、最小二乘单程波偏移和最小二乘逆时偏移。
正则化的最小二乘法曲线拟合pythonHessian矩阵可以表示为:
(5)
式中:f(ω)为地震子波;G(xs,x,ω),G(xs,y,ω)分别表示炮点到点x和y的Green函数;G(xr,x,ω),G(y,xr,ω)分别表示点x和y到检波点xr的Green函数。可见,Hessian矩阵是一个模糊化算子,包含了子波效应、Green函数表述的波场传播效应和观测系统决定的照明因素等。可以认为,常规偏移是模糊化算子作用于真实地下参数,其结果是一个模糊化的像;最小二乘偏移则是Hessian矩阵的逆作用于常规偏移成像结果,通过去模糊化能够得到一个清晰的地震成像结果。所以,最小二乘偏移相对于常规偏移成像而言,能够提高成像分辨率、弥补不规则照明的影响、减少成像假象、改善成像聚焦,消除波传播的影响因素、均衡成像振幅、提高成像保幅性。图1对比了Sigsbee模型数据常规偏移与最小二乘偏移的效果[37],可见最小二乘偏移分辨率更高,盐丘下照明得到补偿,盐丘边界成像也更加清晰,反射系数的振幅关系更好地体现了地下真实情况,充分显示了最小二乘偏移的理论优势。
图1 Sigsbee模型成像剖面对比a 单程波偏移; b 最小二乘单程波偏移
实际最小二乘偏移计算中,由于目标函数梯度为零仅仅是一种理想假设,且Hessian矩阵非常庞大,因而计算和存储都很困难,求Hessian矩阵的逆更不具可行性,不能通过直接求解法方程实现最小二乘偏移。最小二乘偏移通常基于炮集数据采用迭代法从初始解开始逐步逼近真实解,
实际应用中存在观测数据与预测数据的匹配问题,而且要求地震数据的信噪比不能太低,速度模型精度要高,否则无法收敛到一个稳定的成像结果。
2 最小二乘偏移的研究现状
迭代法最小二乘偏移在实际应用中的数据匹配问题和计算效率低影响了最小二乘偏移的应用。基于此,当前最小二乘偏移有两个重点研究方向:一是构造合适的正则化(或预条件)算子,保证反演过程稳定,改善反演效果,有效提高反演的收敛速度;二是对Hessian矩阵进行简化或近似计算,以降低实现最小二乘偏移成像的成本。前者主要用于数据域的最小二乘偏移,后者主要用于成像域的最小二乘偏移。
数据域迭代法是经典的最小二乘偏移实现方法,包括最小二乘Kirchhoff偏移技术、最小二乘单程波偏移技术和最小二乘逆时偏移技术。SALOMONS等[38]介绍了一种最小二乘Kirchhoff偏移技术,与常规最小二乘偏移不同,其目标泛函中除了预测数据和观测数据的匹配,还考虑了共成像点道集的相似性和成像剖面的横向连续性。利用该技术进行了加拿大和尼日利亚两个三维工区的实际资料处理。加拿大探区陆上采集数据稀疏、不规则,地下照明不均匀,常规偏移成像效果不佳,小偏移距成像剖面存在严重的偏移画弧现象。采用最小二乘Kirchhoff偏移技术
后大幅改善了常规偏移存在的画弧效应,消除了浅层的采集脚印影响,成像道集的质量得到了明显提高。尼日利亚探区成像结果也显示最小二乘Kirchhoff偏移提高了地震成像的分辨率和信噪比(图2)。三维最小二乘单程波偏移相对基于双程波算子的最小二乘逆时偏移而言,采用了更高效率的单程波算子,图3为最小二乘单程波偏移技术在墨西哥湾某三维宽方位实际数据处理的实例[37]。与常规单程波偏移相比,最小二乘单程波偏移减少了采集脚印的影响,提高了成像分辨率和深部的成像质量,剖面的断层结构更加清晰。DAI等[39]展示了数据域迭代最小二乘逆时偏移技术在盐下成像中的应用效果,指出该技术能够增强盐下成像能量,改善同相轴的连续性(图4),然而从剖面上并没有看到成像分辨率的明显提升。
图2 尼日利亚某探区成像结果对比a Kirchhoff偏移; b 最小二乘Kirchhoff偏移
图3 墨西哥湾某探区成像结果对比a 单程波偏移; b 最小二乘单程波偏移
图4 墨西哥湾某探区成像结果对比a RTM; b 最小二乘RTM
由于迭代法最小二乘偏移计算量大、效率低,近几年成像域非迭代最小二乘偏移方法受到越来越多的关注。其主要思路是利用初始偏移结果和基于此偏移结果的反偏移数据再做一次偏移,
利用两次偏移结果之间的关系(m=LTLm0=Hm0),估计出一系列非稳相滤波器来近似Hessian矩阵的逆,然后利用这些滤波器对偏移结果进行标定和滤波。FLETCHER等[40]比较了数据域最小二乘偏移与成像域最小二乘偏移,认为采用点扩散函数的成像域最小二乘偏移也能够提高成像分辨率,在噪声满足一定条件时,两种方法的结果应该一致。WANG等[41]总结了数据域最小二乘偏移和成像域最小二乘偏移实现方法,利用实际盐下成像数据对两种方法进行了对比分析,认为数据域迭代法最小二乘偏移可以拓展成像频带,但对于减少成像噪声效果不佳,成像域最小二乘偏移则可以补偿因照明不佳导致的振幅损失,减少偏移假象(图5)。CASASANTA等[42]给出了成像域最小二乘偏移在加蓬地区的应用实例,在偏移算子里考虑了衰减补偿(即LS Q-Kirchhoff偏移),相对于一般Kirchhoff偏移而言,显著提高了成像分辨率。然而对比频谱可以看出,这种视分辨率的提升主要来源于Q补偿(图6),最小二乘偏移技术本身对分辨率的提升有限。
图5 墨西哥湾某探区成像结果对比a RTM; b 成像域最小二乘RTM
图6 不同技术成像结果的频谱
综合分析以上实例中的应用效果,可以认为迭代法最小二乘偏移理论效果佳,但对资料品质要
求高,迭代计算量大,基于非稳相滤波器的成像域最小二乘偏移技术能够补偿振幅、增强同相轴连续性,明显改善深层反射层的成像质量。最小二乘偏移特别是最小二乘逆时偏移要达到较为理想的效果,能够在生产中得到推广应用,还需要持续开展实用化研究。张宇[43]指出,目前最小二乘偏移在生产中的应用仍然处于试验探索阶段。
3 应用中的瓶颈问题和技术方案
最小二乘偏移的目标是估计正确的(角度)反射系数,计算过程是去模糊化算子作用于常规偏移结果,理论上能够得到一个振幅均衡、假象少、分辨率高的成像剖面。然而,实际应用中最小二乘偏移较难有效收敛并得到较为理想的反演结果。最小二乘偏移反演成像效果不理想的原因包括:正演不能很好地模拟实际观测数据、预测误差不满足高斯分布、子波未知、背景速度不能满足线性反演假设要求和观测数据不完整(有限孔径、不规则)等。下面对影响最小二乘偏移应用效果的瓶颈问题进行具体分析,并介绍一些针对性的技术方案。
最小二乘偏移采用的算子基于常密度声波方程,且只能模拟一次波信息,与观测数据差别较大。实际地下介质至少是粘弹性介质,且具有各向异性特征,真实地震记录中除了纵波,还有横波、转换波等信息,即便是纵波,也包括一次反射波、多次波、直达波、折射波等。由于真实
地层存在吸收衰减效应,记录波场跟理论预测的波场也存在振幅、频率等差异。同时,野外勘探条件复杂多样,地震采集会记录到许多干扰波,这些噪声通常无法由理论正演算子来模拟,会影响数据匹配的质量。这些因正演算子无法精确描述地下真实波场物理传播过程或因野外采集因素而导致的难以避免的误差,会影响最小二乘偏移的收敛和稳定性,从而影响最终的成像效果。此外,实际资料中子波比较复杂,不同炮的子波也存在差异,而最小二乘偏移流程中一般利用理论子波进行偏移和反偏移,这也将导致合成数据与观测数据的振幅、相位、频带存在较大差异。针对以上问题,DONG等[44]采用了一种预处理方案,对观测数据和预测数据分别进行预处理,包括去噪、滤波、振幅处理等,尽量缩小两种数据间的误差。ZHANG等[35]、DUTTA[45]、DUAN等[46]借鉴了全波形反演的思路,将互相关误差泛函引入到了最小二乘偏移成像框架中,更多地强调数据的相位信息,降低了最小二乘偏移方法对震源子波和振幅因素的敏感性,当然这也损害了最小二乘偏移在分辨率提升方面的优势。ZENG等[47]针对预测数据与观测数据的不一致问题,引入了一个可信度参数,通过归一化的互相关来评估两个数据的相似度,将可信度参数加入到目标泛函中,提高反演的稳定性。考虑到实际介质的复杂性,最小二乘偏移的偏移算子由各向同性声波方程发展到各向异性弹性波方程,Q补偿也被纳入到算子中[42]。然而各向异性弹性波最小二乘偏移目前仅停留在理论研究方面,距离实际应用还有很漫长的路要走。
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论