无约束优化问题的求解方法
无约束优化问题是指在不考虑任何限制条件下,通过调整自变量来寻函数的最大值或最小值的问题。在数学和工程领域中,无约束优化问题是一个重要的研究方向,其解决方法也非常丰富和多样。
下面将介绍几种常用的无约束优化问题求解方法。
一、梯度下降法
梯度下降法是一种基于一阶导数信息的优化算法。其基本思想是通过不断迭代地朝着函数的负梯度方向进行搜索,从而到函数的极小值点。具体来说,梯度下降法的迭代公式如下:

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。

发表评论