一、 什么是黎曼猜想
黎曼猜想——最重要的数学猜想
早在1737年,大数学家欧拉就发现了质数分布问题与Zeta函数的联系,给出并证明了欧拉乘积公式,使得Zeta函数成为研究质数问题的经典方法。
欧拉乘积公式,其中p为质数,n为自然数
黎曼猜想(Riemann Hypothesis)由大数学家黎曼在1859年首次提出,讨论黎曼Zeta函数的非平凡解问题。
黎曼猜想是众多尚未解决的最重要的数学问题之一,被克雷数学研究所列为待解决的七大千禧问题,悬赏百万美金证明或者证伪。一百年前希尔伯特就曾被问过一个问题“假定你能死而复
生,你会做什么?”,他的回答是,“我会问黎曼猜想是否已经解决”。可见黎曼猜想多么吸引人
    黎曼猜想是关于黎曼Zeta函数的零点分布的猜想。黎曼Zeta函数长这个样子:
黎曼Zeta函数有两种零点,一种是位于实数轴线上的零点,被称为平凡零点,另一种是位于其他复平面区域上的零点,被称为非平凡零点,目前数学家已经证明这些非平凡零点全部位于实部区间为0到1的复平面内,而黎曼则大胆猜想,这些非平凡零点全部位于实部为1/2的一条直线上。
“所有非平凡零点都位于实部为1/2的直线上”是一个尚未得到严格证明的猜想,但数学家们至今到的上万亿个非平凡零点的确都位于这条直线上,无一例外。
    黎曼猜想还跟幂律分布有关。
我们都知道幂律分布是指
正则化常数其中x如果只能取1,2,3,...,n的整数,c为归一化常数,满足:
而这里面的
就是Zeta函数,黎曼猜想就是关于这个函数的,但是a可以取复数值。
黎曼猜想真的会被证明吗?
质数分布没有简单规律,但质数出现的频率跟黎曼Zeta函数紧密相关。有数学家甚至认为黎曼猜想与强条件下的质数定理是等价的。目前已经验证了前1,500,000,000个质数对这个定理都成立,但至今没有完全证明。黎曼猜想得证,对质数研究、数论研究意义重大。
黎曼猜想对许多数学领域都意义重大,质数分布只是其中一个。有上千个数学命题都建立在黎曼猜想为真的基础上。多数数学家认为这个猜想是正确的,如果黎曼猜想被证伪,数学体系将失去重要根基。
二、 黎曼猜想被证明了吗?
如果这是真的,Atiyah爵士将不仅获得由克雷数学研究所悬赏的一百万美金奖励,更是他个人的至高荣誉和整个数学界的狂欢。
然而,根据我们目前的了解,Atiyah爵士极有可能是在自娱自乐逗大家玩……
黎曼函数和黎曼猜想简介
大家这几天应该被动恶补了不少黎曼函数和黎曼猜想的介绍了,这里还是不厌其烦地再简单说下。
首先有无穷级数 ζ(s) :
当s取1时,它就是调和级数1+1/2+1/3+1/4+...,算数意义上不收敛。s=2时,级数收敛于π2/6。等等。当s的取值为复数s=x+iy时,它会把复平面上的点s(x,iy)映射到另一点s'(x',iy')。
我们注意到这个级数要求s的实部大于1(x>1),否则这个级数不收敛,也就没有我们熟悉的数值和结果。
 ζ(s)在复平面上的图像,Re(s)>1,此时图像全部分布在Re(ρ)=1/2线的右侧。图源3blue1brown
黎曼函数是ζ(s)在整个复平面的解析延拓,将s的定义域扩展到整个复平面。(值得说明的是,解析延拓是一种非常强的约束。如果一个函数存在解析延拓,那么解析延拓的结果是唯一的。
在这里 ζ(s)的解析延拓刚好展现出了仿佛对称的样式,而不是先做了一个对称然后把它称为解析延拓)

黎曼函数在整个复平面上的图像。图源3blue1brown
黎曼在提出黎曼函数时轻松地发现,当s取负偶数整数时,函数值为零,那么s=-2n(n为自然数)就被称为黎曼函数的平凡零点(平凡表示没什么难度的、很容易理解的)。
同时,在解析延拓后的方程中带入s=-1,得到1+2+3+4+...=-1/12;带入s=-3,得到1+23+33+43+...=1/120。这样的结果并不是我们熟悉的1+1=2那样的算数和,它只是揭示了等号左边和右边的式子有某种我们还不完全理解联系。
另一些零点就没那么普通了(非平凡零点),它们是复数,而且有耐人寻味的分布规律。黎曼在1859年《论小于给定数值的素数个数》论文中提出了三个命题:
命题一,认为非平凡零点都位于Re(ρ)=0到Re(ρ)=1的条状区间内
命题二,认为几乎所有非平凡零点都位于 Re(ρ)=1/2的直线上,这条线也被称为临界线
命题三,黎曼谨慎地猜测有可能所有非平凡零点都位于 Re(ρ)=1/2的直线上
Re(ρ)=1/2经黎曼函数变换后的曲线的一部分。它弯弯曲曲无数次穿过了函数值为0的点——通过图像我们也可以直观猜测黎曼函数有无穷多个非平凡零点在Re(ρ)=1/2的直线上。图源3blue1brown
大家应该还听说过黎曼函数揭示了素数的精细分布规律,限于本文作者学识有限这里暂不介绍,有兴趣的同学欢迎自行百度卢昌海的《黎曼猜想漫谈》。
黎曼猜想证明的进度
黎曼的这篇论文发表于1859年。当时的数学家不怎么喜欢发论文,他们发表的成果只是自己所有研究中的经过深思熟虑、有充足的论据支撑的一小部分。黎曼在当时也是领先于时代的数学家,以致于他的论文发表后,当时的许多数学家连他提出的命题一和二都认为只是黎曼的单方面幻想(黎曼在文中则是由非常肯定的语气提出的)。
由于黎曼猜想的难度之高,数学界做出进展的速度极为迟缓,甚至有观点认为“如果黎曼是错的,我们的日子反倒会好过一些”。
论文发表46年后,数学界终于证明了命题一;73年后,另一位德国数学家Siegel整理黎曼仅存的手稿,让黎曼当时演算零点所用的公式重见天日(并命名为Riemann-Siegel公式),同时震惊了整个数学界,因为这一公式比73年后数学家们所用的公式还要先进;数学界也更加为黎曼的思想以及猜想的前瞻性所折服。
借着这一公式,后来的数学家与计算机科学家们用计算的方法加以验证,已经验证了超过前200亿个非平凡零点都在临界线上——但数学毕竟不是经验科学,这并不能证明第三个命题正确。
第二个命题(几乎都位于临界线上)的证明则推进到“至少有40%的非平凡零点在临界线上”,就再也没有新的进展了。黎曼猜想,尤其是命题三,仍未得到证明。

一窥前15个非平凡零点
回过头来想想黎曼给出三个命题时的态度,对命题一、二,是十分肯定的预期;而命题三,他也只敢谨慎地猜测。
160年过去了,数学家们几乎都相信黎曼猜想是正确的,但还没有人拿出严格的证明。
对于黎曼猜想,数学界有两句调侃:“如果魔鬼与一位数学家做交易,允许他用灵魂交换一个命题的证明,那他大概率会选择黎曼猜想的证明”,以及“如果500年后黎曼活过来了,他要问的第一件事就是黎曼猜想证明了吗?”足见黎曼猜想的崇高地位。
实际上,数学界已经有许多新的理论和公式是建立在假设黎曼猜想正确的基础上的,黎曼猜想一旦证明也是对他们的莫大的鼓舞。
当今的数学家们直觉上就不相信Atiyah爵士
经过刚才的背景介绍,大家想必对黎曼猜想证明的难度已经有所感受。简单明了的证明方法如果存在,之前一百多年中的数学家,包括极具远见的黎曼本人都有极大的可能直接发现它。
以近几十年来证明的重要数学猜想而言,Perelman证明Poincare猜想,三篇论文用了将近70页,而张益唐在给出孪生质数猜想的估计时也写了将近60页。
而Atiyah爵士展现出来的是:一篇长度为5页的论文预印本,其中引用的介绍Todd函数的论文也只有17页。以及,介绍自己证明过程的演讲中,关于证明过程本身的PPT只有一页。

Atiyah爵士演讲中用到的一页PPT
只凭证明长度, Atiyah爵士就收获了大多数数学家的质疑。
另一点也引起了直觉上的质疑的是,出生于1929年的Atiyah爵士如今已经89岁高龄。纵观整个数学史,尚无一位数学家在如此高龄做出这种级别的成果。
Atiyah爵士虽然证明了Atiyah-Singer指标定理(被誉为上个世纪微分几何中最重要的定理)并获得了菲尔兹奖与阿贝尔奖,但一方面他是研究几何/解析几何的,黎曼猜想则属于复分析与数论,处于不同的数学领域。
另一方面,据数学博士、前浙大物理学博士后回忆,“老头在几年前嚷嚷着自己证明了6维球面上没有复结构最后却不了了之”,他认为这次宣告的大新闻可能仍然是闹笑话。

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。