python图像增强算法实现
使⽤python编写了共六种图像增强算法:
1)基于直⽅图均衡化
2)基于拉普拉斯算⼦
3)基于对数变换
4)基于伽马变换
5)限制对⽐度⾃适应直⽅图均衡化:CLAHE
6)retinex-SSR
7)retinex-MSR其中,6和7属于同⼀种下的变化。
将每种⽅法编写成⼀个函数,封装,可以直接在主函数中调⽤。
采⽤同⼀幅图进⾏效果对⽐。
图像增强的效果为:
直⽅图均衡化:对⽐度较低的图像适合使⽤直⽅图均衡化⽅法来增强图像细节
拉普拉斯算⼦可以增强局部的图像对⽐度
log对数变换对于整体对⽐度偏低并且灰度值偏低的图像增强效果较好
伽马变换对于图像对⽐度偏低,并且整体亮度值偏⾼(对于相机过曝)情况下的图像增强效果明显
CLAHE和retinex的效果均较好局部直方图均衡化
python代码为:
# 图像增强算法,图像锐化算法
# 1)基于直⽅图均衡化 2)基于拉普拉斯算⼦ 3)基于对数变换 4)基于伽马变换 5)CLAHE 6)retinex-SSR 7)retinex-MSR # 其中,基于拉普拉斯算⼦的图像增强为利⽤空域卷积运算实现滤波
# 基于同⼀图像对⽐增强效果
# 直⽅图均衡化:对⽐度较低的图像适合使⽤直⽅图均衡化⽅法来增强图像细节
# 拉普拉斯算⼦可以增强局部的图像对⽐度
# log对数变换对于整体对⽐度偏低并且灰度值偏低的图像增强效果较好
# 伽马变换对于图像对⽐度偏低,并且整体亮度值偏⾼(对于相机过曝)情况下的图像增强效果明显
import cv2
import numpy as np
import matplotlib.pyplot as plt
# 直⽅图均衡增强
def hist(image):
r, g, b = cv2.split(image)
r1 = cv2.equalizeHist(r)
g1 = cv2.equalizeHist(g)
b1 = cv2.equalizeHist(b)
image_equal_clo = ([r1, g1, b1])
return image_equal_clo
# 拉普拉斯算⼦
def laplacian(image):
kernel = np.array([[0,-1,0],[-1,5,-1],[0,-1,0]])
image_lap = cv2.filter2D(image, cv2.CV_8UC3, kernel)
return image_lap
# 对数变换
def log(image):
image_log = np.uint8(np.log(np.array(image)+1))
# 转换成8bit图像显⽰
return image_log
# 伽马变换
def gamma(image):
fgamma =2
image_gamma = np.uint8(np.power((np.array(image)/255.0), fgamma)*255.0) alize(image_gamma, image_gamma,0,255, cv2.NORM_MINMAX)
return image_gamma
# 限制对⽐度⾃适应直⽅图均衡化CLAHE
def clahe(image):
b, g, r = cv2.split(image)
clahe = ateCLAHE(clipLimit=2.0, tileGridSize=(8,8))
b = clahe.apply(b)
g = clahe.apply(g)
r = clahe.apply(r)
image_clahe = ([b, g, r])
return image_clahe
def replaceZeroes(data):
min_nonzero =min(o(data)])
data[data ==0]= min_nonzero
return data
# retinex SSR
def SSR(src_img, size):
L_blur = cv2.GaussianBlur(src_img,(size, size),0)
img = replaceZeroes(src_img)
L_blur = replaceZeroes(L_blur)
dst_Img = cv2.log(img/255.0)
dst_Lblur = cv2.log(L_blur/255.0)
dst_IxL = cv2.multiply(dst_Img, dst_Lblur)
log_R = cv2.subtract(dst_Img, dst_IxL)
dst_R = alize(log_R,None,0,255, cv2.NORM_MINMAX)
log_uint8 = vertScaleAbs(dst_R)
return log_uint8
def SSR_image(image):
size =3
b_gray, g_gray, r_gray = cv2.split(image)
b_gray = SSR(b_gray, size)
g_gray = SSR(g_gray, size)
r_gray = SSR(r_gray, size)
result = ([b_gray, g_gray, r_gray])
return result
# retinex MMR
def MSR(img, scales):
weight =1/3.0
scales_size =len(scales)
h, w = img.shape[:2]
log_R = np.zeros((h, w), dtype=np.float32)
for i in range(scales_size):
img = replaceZeroes(img)
L_blur = cv2.GaussianBlur(img,(scales[i], scales[i]),0)
L_blur = replaceZeroes(L_blur)
dst_Img = cv2.log(img/255.0)
dst_Lblur = cv2.log(L_blur/255.0)
dst_Ixl = cv2.multiply(dst_Img, dst_Lblur)
log_R += weight * cv2.subtract(dst_Img, dst_Ixl)
dst_R = alize(log_R,None,0,255, cv2.NORM_MINMAX) log_uint8 = vertScaleAbs(dst_R)
return log_uint8
def MSR_image(image):
scales =[15,101,301]# [3,5,9]
b_gray, g_gray, r_gray = cv2.split(image)
b_gray = MSR(b_gray, scales)
g_gray = MSR(g_gray, scales)
r_gray = MSR(r_gray, scales)
result = ([b_gray, g_gray, r_gray])
return result
if __name__ =="__main__":
image = cv2.imread("example.jpg")
image_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
plt.subplot(4,2,1)
plt.imshow(image)
plt.axis('off')
plt.title('Offical')
# 直⽅图均衡增强
image_equal_clo = hist(image)
plt.subplot(4,2,2)
plt.imshow(image_equal_clo)
plt.axis('off')
plt.title('equal_enhance')
# 拉普拉斯算法增强
image_lap = laplacian(image)
plt.subplot(4,2,3)
plt.imshow(image_lap)
plt.axis('off')
plt.title('laplacian_enhance')
# LoG对象算法增强
image_log = log(image)
plt.subplot(4,2,4)
plt.imshow(image_log)
plt.axis('off')
plt.title('log_enhance')
# 伽马变换
image_gamma = gamma(image)
plt.subplot(4,2,5)
plt.imshow(image_gamma)
plt.axis('off')
plt.title('gamma_enhance')
# CLAHE
image_clahe = clahe(image)
plt.subplot(4,2,6)
plt.imshow(image_clahe)
plt.axis('off')
plt.title('CLAHE')
# retinex_ssr
image_ssr = SSR_image(image)
plt.subplot(4,2,7)
plt.imshow(image_ssr)
plt.axis('off')
plt.title('SSR')
# retinex_msr
image_msr = MSR_image(image)
plt.subplot(4,2,8)
plt.imshow(image_msr)
plt.axis('off')
plt.title('MSR')
plt.show()
增强效果如下图所⽰:
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论