高等数学公式汇总
高等数学公式汇总如下:
1. 幂函数:
指数函数:
f(x) = cos(x) + i*sin(x)
f(x) = exp(x) - 1/(2*exp(2x))
f(x) = frac{1}{1-x^2}
f(x) = sqrt(x)/x
2. 三角函数:
正弦函数:
s(x) = sin(x)/cos(x)
s(x) = frac{1}{sqrt{1-x^2}}
s(x) = frac{cos(x) - x*sin(x)}{sqrt{1-x^2}}
s(x) = frac{2*cos(x)/2}{sqrt{1-x^2}}
3. 余弦函数:
c(x) = cos(x)
c(x) = cos(x)/s(x)
c(x) = frac{1}{sqrt{1-x^2}}
c(x) = frac{2*cos(x) - x*sin(x)}{sqrt{1-x^2}}
4. 正切函数:
tan(x) = sin(x)/cos(x)
tan(x) = frac{sin(x) + cos(x)}{2*cos(x)/sin(x) - sin(x)/cos(x)}
tan(x) = frac{1}{sqrt{1-sin^2(x)/cos^2(x)}}
5. 指数函数和三角函数的组合:
e^x = cos(x) + i*sin(x)
e^x = exp(x) - 1/(2*exp(2x))
e^x = frac{1}{1-x^2}
e^x = sqrt(x)/x
指数函数积分 6. 对数函数:
log(x) = ln(x/e) + i*π/2
log(x) = ln(x) - ln(2*sqrt(x))
log(x) = ln(1+x)
7. 微积分中的基本公式:
导数:
f"(x) = lim(Δx->0)*frac{f(x+Δx) - f(x)}{Δx}
f"(x) = lim(Δx->0)*frac{f(x+Δx) + f(x-Δx)}{2Δx}
f"(x) = lim(Δx->0)*frac{f(x)/(x+Δx) - f(x)/(x-Δx)}{Δx/(x+Δx) + Δx/(x-Δx)}
f"(x) = lim(Δx->0)*frac{f(x)/x}{1 + frac{f(x)}{x/2}}
微分中的基本公式:
d/dx (a^x) = a^x*ln(a)
d/dx (e^x) = e^x*ln(e)
d/dx (1/x) = 1/x*ln(x)
d/dx (a^x) * a^(-x) = e^x
d/dx (x^n) = nx^(n-1)
d/dx (sin(x)) = cos(x)
d/dx (cos(x)) = -sin(x)
d/dx (tan(x)) = sin(x)/cos(x)
8. 积分基本公式:
积分一:
∫dx = x + C
∫dx = 1/2*ln(|x| + 1) + C
∫dx = 1/(2*sqrt(x^2 + 1)) + C
∫dx = 1/(2*sqrt(x)) + C
积分二:
∫dx/dx = 1/x
∫dx/(2x) = 1/(2*x^2)
∫dx/(x^2 + z) = -1/(x^3 + z^2) + C
积分三:
∫e^x dx = e^x + C
∫e^x dx = 1/(2*sqrt(e)*ln(e)) + C
∫e^x dx = 1/(2*sqrt(e)*sin(x)) + C
积分四:
∫a^x dx = a^x + C
∫a^x dx = 1/(2*sqrt(a^2 + 1)) + C
∫a^x dx = 1/(2*sqrt(a)) + C
9. 链式法则:
链式法则:
∫[(x+a)^2 - (x-a)^2] dx = x^3 + 3x^2*a + 3x*a^2 - (a^3 + a^2*a + a*a^2)
= x^3 + 3x^2*a + 3x*a^2 - a^3 - a^2*a + a*a^2
= (x-a)(x^2 + 3x*a + 3a^2) - a^3
10. 微积分中的常数和极限:
常数:
C = lim(n->无穷大)*sum(1/n)
C = lim(n->无穷大)*sqrt(1+4n^2)
C = lim(n->无穷大)*frac{1}{2*(1-2n^2) }
C = lim(x->正无穷大)*log(1+x)
C = lim(x->负无穷大)*log(1-x)
极限:
趋于1:
s(n) = frac{1}{n} + 1/(n^2 + 2)
趋于0:
s(n) = frac{1}{n} + 1/(n^2)
趋于正无穷:
s(n) = frac{1}{n} + O(1/n^3)
趋于负无穷:
s(n) = frac{1}{n} + O(1/n^2)。
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论