ETL学习心得:探求数据仓库关键环节ETL的本质
元数据是描述数据的数据,他的含义非常广泛,这里仅指ETL的元数据。11 : 10 探求ETL本质之六(元数据漫谈)对于元数据(Metadata)的定义到目前为止没有什么特别精彩的,这个概念非常广,一般都是这样定义,"元数据
做数据仓库系统,ETL是关键的一环。说大了,ETL是数据整合解决方案,说小了,就是倒数据的工具。回忆一下工作这么些年来,处理数据迁移、转换的工作倒还真的不少。但是那些工作基本上是一次性工作或者很小数据量,使用access、DTS或是自己编个小程序搞定。可是在数据仓库系统中,ETL上升到了一定的理论高度,和原来小打小闹的工具使用不同了。究竟什么不同,从名字上就可以看到,人家已经将倒数据的过程分成3个步骤,E、T、L分别代表抽取、转换和装载。
其实ETL过程就是数据流动的过程,从不同的数据源流向不同的目标数据。但在数据仓库中,ETL有几个特点,一是数据同步,它不是一次性倒完数据就拉到,它是经常性的活动,按照固定周期运行的,甚至现在还有人提出了实时ETL的概念。二是数据量,一般都是巨大的,值得你将数据流动的过程拆分成E、T和L。
现在有很多成熟的工具提供ETL功能,例如datastage、powermart等,且不说他们的好坏。从应用角度来说,ETL的过程其实不是非常复杂,这些工具给数据仓库工程带来和很大的便利性,特别是开发的便
利和维护的便利。但另一方面,开发人员容易迷失在这些工具中。举个例子,VB是一种非常简单的语言并且也是非常易用的编程工具,上手特别快,但是真正VB的高手有多少?微软设计的产品通常有个原则是“将使用者当作傻瓜”,在这个原则下,微软的东西确实非常好用,但是对于开发者,如果你自己也将自己当作傻瓜,那就真的傻了。ETL
工具也是一样,这些工具为我们提供图形化界面,让我们将主要的精力放在规则上,以期提高开发效率。从使用效果来说,确实使用这些工具能够非常快速地构建一个job来处理某个数据,不过从整体来看,并不见得他的整体效率会高多少。问题主要不是出在工具上,而是在设计、开发人员上。他们迷失在工具中,没有去探求ETL的本质。
可以说这些工具应用了这么长时间,在这么多项目、环境中应用,它必然有它成功之处,它必定体现了ETL的本质。如果我们不透过表面这些工具的简单使用去看它背后蕴涵的思想,最终我们作出来的东西也就是一个个独立的job,将他们整合起来仍然有巨大的工作量。大家都知道“理论与实践相结合”,如果在一个领域有所超越,必须要在理论水平上达到一定的高度
探求ETL本质之一
ETL的过程就是数据流动的过程,从不同异构数据源流向统一的目标数据。其间,数据的抽取、清洗、转换和装载形成串行或并行的过程。ETL的核心还是在于T 这个过程,也就是转换,而抽取和装
载一般可以作为转换的输入和输出,或者,
它们作为一个单独的部件,其复杂度没有转换部件高。和OLTP系统中不同,
那里充满这单条记录的insert、update和select等操作,ETL过程一般都是批
量操作,例如它的装载多采用批量装载工具,一般都是DBMS系统自身附带的
工具,例如Oracle SQLLoader和DB2的autoloader等。
ETL本身有一些特点,在一些工具中都有体现,下面以datastage和powermart 举例来说。
1、静态的ETL单元和动态的ETL单元实例;一次转换指明了某种格式的数据
如何格式化成另一种格式的数据,对于数据源的物理形式在设计时可以不用指定,它可以在运行时,当这个ETL单元创建一个实例时才指定。对于静态和动态的ETL单元,Datastage没有严格区分,它的一个Job就是实现这个功能,在早期版本,一个Job同时不能运行两次,所以一个Job相当于一个实例,在后期版本,它支持multiple instances,而且还不是默认选项。Powermart中将这两个
概念加以区分,静态的叫做Mapping,动态运行时叫做Session。
2、ETL元数据;元数据是描述数据的数据,他的含义非常广泛,这里仅指ETL 的元数据。主要包括每次转换前后的数据结构和转换的规则。ETL元数据还包括形式参数的管理,形式参数的ETL单元定义的参数,相对还有实参,它是运行
时指定的参数,实参不在元数据管理范围之内。
3、数据流程的控制;要有可视化的流程编辑工具,提供流程定义和流程监控功能。流程调度的最小单位是ETL单元实例,ETL单元是不能在细分的ETL过程,当然这由开发者来控制,例如可以将抽取、转换放在一个ETL单元中,那样这
个抽取和转换只能同时运行,而如果将他们分作两个单元,可以分别运行,这有利于错误恢复操作。当然,ETL单元究竟应该细分到什么程度应该依据具体应用来看,目前还没有到很好的细分策略。比如,我们可以规定将装载一个表的功能作为一个ETL单元,但是不可否认,这样的ETL单元之间会有很多共同的操作,例如两个单元共用一个Hash表,要将这个Hash表装入内存两次。
4、转换规则的定义方法;提供函数集提供常用规则方法,提供规则定义语言描述规则。
5、对数据的快速索引;一般都是利用Hash技术,将参照关系表提前装入内存,在转换时查这个hash表。Datastage中有Has件技术,Powermart也有
类似的Lookup功能。
探求ETL本质之二(分类)
昨在IT-Director上阅读一篇报告,关于ETL产品分类的。一般来说,我们眼中
的ETL工具都是价格昂贵,能够处理海量数据的家伙,但是这是其中的一种。
它可以分成4种,针对不同的需求,主要是从转换规则的复杂度和数据量大小来看。它们包括
1、交互式运行环境,你可以指定数据源、目标数据,指定规则,立马ETL。这种交互式的操作无疑非常方便,但是只能适合小数据量和复杂度不高的ETL过程,因为一旦规则复杂了,可能需要语言级的描述,不能简简单单拖拖拽拽就可
以的。还有数据量的问题,这种交互式必然建立在解释型语言基础上,另外他的灵活性必然要牺牲一定的性能为代价。所以如果要处理海量数据的话,每次读取一条记录,每次对规则进行解释执行,每次在写入一条记录,这对性能影响是非常大的。
2、专门编码型的,它提供了一个基于某种语言的程序框架,你可以不必将编程精力放在一些周边的功能上,例如读文件功能、写数据库的功能,而将精力主要放在规则的实现上面。这种近似手工代码的
性能肯定是没话说,除非你的编程技巧不过关(这也是不可忽视的因素之一)。对于处理大数据量,处理复杂转换逻辑,这种方式的ETL实现是非常直观的。
3、代码生成器型的,它就像是一个ETL代码生成器,提供简单的图形化界面操作,让你拖拖拽拽将转换规则都设定好,其实他的后台都是生成基于某种语言的程序,要运行这个ETL过程,必须要编译才行。Datastage就是类似这样的产品,设计好的job必须要编译,这避免了每次转换的解释执行,但是不知道它生成的中间语言是什么。以前我设计的ETL工具大挪移其实也是归属于这一类,它提供了界面让用户编写规则,最后生成C++语言,编译后即可运行。这类工具的特点就是要在界面上下狠功夫,必须让用户轻松定义一个ETL过程,提供丰富的插件来完成读、写和转换函数。大挪移在这方面就太弱了,规则必须手写,而且要写成标准c++语法,这未免还是有点难为最终用户了,还不如做成一个专业编码型的产品呢。另外一点,这类工具必须提供面向专家应用的功能,因为它不可能考虑到所有的转换规则和所有的读写,一方面提供插件接口来让第三方编写特定的插件,另一方面还有提供特定语言来实现高级功能。例如Datastage
提供一种类Basic的语言,不过他的Job的脚本化实现好像就做的不太好,只能手工绘制job,而不能编程实现Job。
4、最后还有一种类型叫做数据集线器,顾名思义,他就是像Hub一样地工作。将这种类型分出来和上
面几种分类在标准上有所差异,上面三种更多指ETL实现的方法,此类主要从数据处理角度。目前有一些产品属于EAI(Enterprise Application Integration),它的数据集成主要是一种准实时性。所以这类产品就像Hub一样,不断接收各种异构数据源来的数据,经过处理,在实施发送到不同的目标数据中去。
虽然,这些类看似各又千秋,特别在BI项目中,面对海量数据的ETL时,中间两种的选择就开始了,在选择过程中,必须要考虑到开发效率、维护方面、性能、学习曲线、人员技能等各方面因素,当然还有最重要也是最现实的因素就是客户的意象。
探求ETL本质之三(转换)
ETL探求之一中提到,ETL过程最复杂的部分就是T,这个转换过程,T过程究竟有哪些类型呢?
一、宏观输入输出
从对数据源的整个宏观处理分,看看一个ETL过程的输入输出,可以分成下面几类:
1、大小交,这种处理在数据清洗过程是常见了,例如从数据源到ODS阶段,如果数据仓库采用维度建模,而且维度基本采用代理键的话,必然存在代码到此键值的转换。如果用SQL实现,必然需要将一个大表和一堆小表都Join起来,当然如果使用ETL工具的话,一般都是先将小表读入内存中再处理。
这种情况,
输出数据的粒度和大表一样。
2、大大交,大表和大表之间关联也是一个重要的课题,当然其中要有一个主表,在逻辑上,应当是主表Left Join辅表。大表之间的关联存在最大的问题就是性能和稳定性,对于海量数据来说,必须有优化的方法来处理他们的关联,另外,对于大数据的处理无疑会占用太多的系统资源,出错的几率非常大,如何做到有效错误恢复也是个问题。对于这种情况,我们建议还是尽量将大表拆分成适度的稍小一点的表,形成大小交的类型。这类情况的输出数据粒度和主表一样。
3、站着进来,躺着出去。事务系统中为了提高系统灵活性和扩展性,很多信息放在代码表中维护,所以它的“事实表”就是一种窄表,而在数据仓库中,通常要进行宽化,从行变成列,所以称这种处理情况叫做“站着进来,躺着出去”。大家对Decode肯定不陌生,这是进行宽表化常见的手段之一。窄表变宽表的过程主要体现在对窄表中那个代码字段的操作。这种情况,窄表是输入,宽表是输出,宽表的粒度必定要比窄表粗一些,就粗在那个代码字段上。
4、聚集。数据仓库中重要的任务就是沉淀数据,聚集是必不可少的操作,它是粗化数据粒度的过程。聚集本身其实很简单,就是类似SQL中Group by的操作,选取特定字段(维度),对度量字段再使用某种聚集函数。但是对于大数据量情况下,聚集算法的优化仍是探究的一个课题。例如是直接使用SQ
L的Group by,还是先排序,在处理。
二、微观规则
从数据的转换的微观细节分,可以分成下面的几个基本类型,当然还有一些复杂的组合情况,例如先运算,在参照转换的规则,这种基于基本类型组合的情况就不在此列了。ETL的规则是依赖目标数据的,目标数据有多少字段,就有多少条规则。
1、直接映射,原来是什么就是什么,原封不动照搬过来,对这样的规则,如果数据源字段和目标字段长度或精度不符,需要特别注意看是否真的可以直接映射还是需要做一些简单运算。
2、字段运算,数据源的一个或多个字段进行数学运算得到的目标字段,这种规则一般对数值型字段而言。
3、参照转换,在转换中通常要用数据源的一个或多个字段作为Key,去一个关联数组中去搜索特定值,而且应该只能得到唯一值。这个关联数组使用Hash算法实现是比较合适也是最常见的,在整个ETL开始之前,它就装入内存,对性能提高的帮助非常大。
4、字符串处理,从数据源某个字符串字段中经常可以获取特定信息,例如身份证号。而且,经常会有数值型值以字符串形式体现。对字符串的操作通常有类型转换、字符串截取等。但是由于字符类型字
段的随意性也造成了脏数据的隐患,所以在处理这种规则的时候,一定要加上异常处理。
5、空值判断,对于空值的处理是数据仓库中一个常见问题,是将它作为脏数据还是作为特定一种维成员?这恐怕还要看应用的情况,也是需要进一步探求的。但是无论怎样,对于可能有NULL值的字段,不要采用“直接映射”的规则类型,必须对空值进行判断,目前我们的建议是将它转换成特定的值。
6、日期转换,在数据仓库中日期值一般都会有特定的,不同于日期类型值的表示方法,例如使用8位整型20040801表示日期。而在数据源中,这种字段基本都是日期类型的,所以对于这样的规则,需要一些共通函数来处理将日期转换为8位日期值、6位月份值等。
7、日期运算,基于日期,我们通常会计算日差、月差、时长等。一般数据库提供的日期运算函数都是基于日期型的,而在数据仓库中采用特定类型来表示日期的话,必须有一套自己的日期运算函数集。
8、聚集运算,对于事实表中的度量字段,他们通常是通过数据源一个或多个字段运用聚集函数得来的,这些聚集函数为SQL标准中,包括
sum,count,avg,min,max。
9、既定取值,这种规则和以上各种类型规则的差别就在于它不依赖于数据源字段,对目标字段取一个固定的或是依赖系统的值。
探求ETL本质之四(数据质量)
大数据etl工具有哪些“不要绝对的数据准确,但要知道为什么不准确。”
这是我们在构建BI系统是对数据准确性的要求。确实,对绝对的数据准确谁也没有把握,不仅是系统集成商,包括客户也是无法确定。准确的东西需要一个标准,但首先要保证这个标准是准确的,至少现在还没有这样一个标准。客户会提出一个相对标准,例如将你的OLAP数据结果和报表结果对比。虽然这是一种不太公平的比较,你也只好认了吧。
首先在数据源那里,已经很难保证数据质量了,这一点也是事实。在这一层有哪些可能原因导致数据质量问题?可以分为下面几类:
1、数据格式错误,例如缺失数据、数据值超出范围或是数据格式非法等。要知道对于同样处理大数据量的数据源系统,他们通常会舍弃一些数据库自身的检查机制,例如字段约束等。他们尽可能将数据检查在入库前保证,但是这一点是很难确保的。这类情况诸如身份证号码、手机号、非日期类型的日期字段等。
2、数据一致性,同样,数据源系统为了性能的考虑,会在一定程度上舍弃外键约束,这通常会导致数据不一致。例如在帐务表中会出现一个用户表中没有的用户ID,在例如有些代码在代码表中不到等。
3、业务逻辑的合理性,这一点很难说对与错。通常,数据源系统的设计并不是非常严谨,例如让用户开户日期晚于用户销户日期都是有可能发生的,一个用户表中存在多个用户ID也是有可能发生的。对这种情况,有什么办法吗?
构建一个BI系统,要做到完全理解数据源系统根本就是不可能的。特别是数据源系统在交付后,有更多维护人员的即兴发挥,那更是要花大量的时间去寻原因。以前曾经争辩过设计人员对规则描述的问题,有人提出要在ETL开始之前务必将所有的规则弄得一清二楚。我并不同意这样的意见,倒是认为在ETL过程要有处理这些质量有问题数据的保证。一定要正面这些脏数据,是丢弃还是处理,无法逃避。如果没有质量保证,那么在这个过程中,错误会逐渐放大,抛开数据源质量问题,我们再来看看ETL过程中哪些因素对数据准确性产生重大影响。
1、规则描述错误。上面提到对设计人员对数据源系统理解的不充分,导致规则理解错误,这是一方面。另一方面,是规则的描述,如果无二义性地描述规则也是要探求的一个课题。规则是依附于目标字段的,在探求之三中,提到规则的分类。但是规则总不能总是用文字描述,必须有严格的数学表达方式。我甚至想过,如果设计人员能够使用某种规则语言来描述,那么我们的ETL单元就可以自动生成、同步,省去很多手工操作了。
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论