ACT245H1S NOTES AND EXAMPLES
©S. Broverman, 2002CALCULUS REVIEW
SET THEORY
A  is a collection of . The phrase set elements " %is an element of "  (% (is denoted by  , and "is not an element of "  %(%¤(is denoted by  .
A set may be defined in terms of certain attributes of its elements, for example, the set of all odd,positive integers may be written as  .
¸%O %          ! #  !    ¹Subset of a set:    means that each element of the set  is an element of the set .  ( )())may contain elements which are not in .
(Union of sets:    is the set all elements in either  or .
(r )()(r )~¸%O % (  % )¹
Intersection of sets:    is the set of all elements in both  and .
(q )()(q )~¸%O % (% )¹
and The difference of two sets:    (c )~¸%O % (  %¤)¹consists of all elements that are in  but not in .  The  consists of all elements , and is () complement of the set B not in )denoted  or .  .
)) ))~¸%O %¤)¹c c Z ÁNote that  .
(c )~(q )Z Example 1:  Verify the following set relationships:
(i)  (the complement of the union of  and  is the intersection of the ²(r )³~(q )()Z Z Z complements of  and )
()(ii) (the complement of the intersection of  and  is the union of the ²(q )³~(r )()Z Z Z complements of  and )
()Solution:  (i)  Since the union of  and  consists of all points in either  , any point not in ()()or (r )()( is in neither  nor , and therefore must be in both the complement of  the and complement of  - the intersection of  and ..  The reverse implication holds in a similar way )()c Z Z - if a point is in the intersection of  and then it is not in  it is not in  so it is not in ()()Ác Z Z  and (r )²(r )³²(r )³(q ), and therefore it is in  .  Therefore, and  consist of the same Z Z Z Z collection of points - they are the sam
e set.
(ii)  The solution is very similar to (i).  U
Empty set:empty set  The  is the set that contains no elements, and is denoted  .  It is also J referred to as the .  Sets  and  are called  if  .
null set disjoint sets ()(q )~J Some special sets of numbers are
, the ,
h ~¸ Á Á ÁÀÀÀ¹positive integers  , the ,
t ~¸ Áf Áf ÁÀÀÀ¹integers  ,are integers and , the k ~¸O  £ ¹  rational numbers
, the ( ,  and  are real numbers that are not rational)l  real numbers l    complex numbers ]~¸ b  O  Á ¹ ~c  real numbers is the set of , where l
Example 2:  For each positive rational number , let  denote the set of all positive integers
5² ³  5²³ such that    is rational.  How many elements are in the set ?
°    A.  1        B.  2        C.  3        D.  4        E.  Infinitely many
Solution :  is a positive integer and  is rational .
5²³~¸ O  ²³¹      ° ²³~¬  5²³²³~¬ 5²³                ° ° 1  ,  2  ,4²³¬ ¤5²³²³~¬  5²³              °  °  is not rational  ,    ,
²³    ~        °  °  °  is irrational for    because    is irrational for  .
Answer: C  U
Relationships involving sets:
1.  (r )~)r (Â(q )~)q (Â(r (~(Â(q (~(
2.  (r ~(Â(q ~Â(c ~(
3.  (q ²)r *³~²(q )³r ²(q *³
4.  (r ²)q *³~²(r )³q ²(r *³
5.  If  ,  then  and  ( )(r )~)(q )~(
6.  For any sets  and ,    and  ()(q ) ( (r )(q ) ) (r )
7.  and  ²(r )³~(q )²(q )³~(r )Z Z Z Z Z Z
8.  For any set ,  ( (
9.  h t k l ]
INTERVALS, INEQUALITIES, ABSOLUTE VALUE
AND UPPER AND LOWER BOUNDS
Open interval:  Closed interval:² Á ³~¸%O  %  ¹´ Á µ~¸%O  %  ¹
Half-open interval:  ´ Á ³~¸%O  %  ¹² Á µ~¸%O  %  ¹  or
Infinite interval:  ´ ÁB³~¸%O  %¹²c BÁ ³~¸%O %  ¹
or  Rules and relationships for inequalities:
1.  If    and  , then    (also, and  )
¬      2.  If  , then for any number ,  (also for )
b    b      3.  If    and  , then    (also for )
4.  If    and  , then    (also for )
5.  If  0, then  £
6.  If  then    has the same sign as  £
7.  If  and  have the same sign and  , then
8.  If  , then
9.  If  , then
10.  If  , then  if (and only if)    &  c  &  l l  11.  If  , then    if (and only if) either    or    &  &  & c
l l Example 3:  What is the solution set for the inequality  ?
%  c% Solution :    .
% ¯c %~    c %b% c% c% c% c%²%c ³
~The numerator of this fraction is always , except when  , so the inequality is satisfied if  %~ the denominator,, is  and .    c %  %£ U
Absolute value of a real number :  %O%O ~%%  O%O ~c %%
if  , and    if  Rules and relationships for absolute values (all numbers are real numbers):
1.  O O ~O c  O
2.  c O O    O O
3.  and  l  ~O O O O ~
4.  and if    then  O  O ~O O h O O  £ ~e e  O O O O
5.  If  , then if (and only if) , and    O&O  c  &  &  ¯O&O    l
6.  If  then    if (and only if) either    or    ÁO&O  &  & c
(i.e., ) ,  and  & ²c BÁc  ³r ² ÁB³&  ¯O&O    l  7.    and  O b  O  O O b O O O c  O  O O c O O
Upper bound of a set  of real numbers:
)  is an  of  if  for every  ,
")% "% )upper bound Lower bound of a set  of real numbers:
)  is a  of  if  for every  M )M  %% )
lower bound Least upper bound of a set  of real numbers:
)  is the  of  if  (i)  is an upper bound of , and
")")least upper bound  (ii)  if  is any other upper bound of  ;
" $$) it is denoted  or  ;
À"À À²)³ " ¸%O % )¹    any number 10 is an upper bound of the interval  but 10 is the l.u.b. ² Á  ³Greatest lower bound of a set  of real numbers:
)  is the  of  if  (i)  is a lower bound of , and
M )M )greatest lower bound  (ii)  if  is any other lower bound of  ;
M  ) it is denoted  or  ;
À À À²)³  ¸%O % )¹  Example 4:  Let  be a set of real numbers such that    and    and let
: À"À À²:³~ À À À²:³~    ;~¸c O % :¹ À"À À²;³ %  .  Find the  .
Solution :  consists of numbers between and , so that  consists of numbers between
:;      c c c ~c  À"À À²;³~c              ~h h  and  .  Then  .  U
Example 5:  Which of the following are equal to the decimal number 15?
I.  1111 (base 2) II.  120 (base 3) III.  30 (base 5)
A.  I and II only
B.  I and III only
C.  II and III only
D.  I, II and III
E.  The correct answer is not given by A, B, C or D
Solution :  I.  b  b  b  ~ b  b  b  ~
II.  b  d  b  d  ~ b  b  ~
III.    Answer:  D      d  b  d  ~  b  ~    U
ANALYTIC GEOMETRY  IN AND l l
Distance between two points  and :²%Á&³²%Á&³      ~²%c %³b ²&c &³
l      Slope of line joining points  and :  ²%Á&³²%Á&³    ~%£%&c&
%c%      if    Intercepts:  the -intercept of a line is the -coordinate of the point of intersection of the line %%with the -axis and a similar definition is made for the -intercept
%&Equations of a line:
1.  Point-Slope:  given on a line with slope ,  ²%Á&³ &c &~ ²%c %³
2.  Point-Point:  given and  on a line,  ²%Á&³²%Á&³    &c&&c&%c%%c%
~  3.  Slope-Intercept:  given slope  and -intercept ,  & &~ %b
4.  Intercept-Intercept:  given  and  intercepts  and ,  %&  b ~
%  &
5.  General:  any straight line can be put in the form  (%b )&b *~ Example :  Find the equation of the line between the points  and  and express it ²c  Á ³² Á ³in the 5 ways described above.  Find the - and -intercepts.
%&Solution :  The equation of the line in point-point form (form 2.) is &c %c²c ³ c²c ³  c  ~~c  .  This can be written in each of the other forms:
1 - Point-Slope:  &c  ~c ²%b  ³
3 - Slope-Intercept:  &~c %b
4 - Intercept-Intercept:  %  ° &b ~
5 - General:  %b  &c  ~
The - and -intercepts are  (found from the equation of the line by substituting in %&%~ &~ and solving for ) and  .
%&~  U Slope of perpendicular:  if a line has slope , then a perpendicular line has slope .
c    The perpendicular line is also referre
d to as th
e normal line at that point.
Distance from point to line :  ²%Á&³(%b )&b *~    ~O(%b)&b*O (b)
l Equation of a circle with center  and radius :  ² Á ³ ²%c  ³b ²&c  ³~
Symmetry of a graph:  A graph is symmetric with respect to the -axis if the point  is %²%Ác &³on the graph whenever the point  is on the graph;  a graph is symmetric with respect to the ²%Á&³&²c %Á&³²%Á&³-axis if  is on the graph whenever  is on the graph;
a graph is symmetric with respect to the origin if  is on the graph whenever  is ²c %Ác &³²%Á&³on the graph.
soa
Example 7:  What type of symmetry is found in the graphs of    and  ?
&~%&~%  Solution :  Since  for any real number , it follows that the graph of    is ²c %³~%%&~%  symmetric with respect to the -axis.  Since  , it follows that the graph of  &²c %³~c %&~%  is symmetric with respect to the origin.
U Example 8:  Find the number of solutions to the system of equations
and    .
&c %&c O%O&b %O%O ~ %b &~    Solution :  The first equation can be written in the form    , so that
²&c O%O³²&c %³~ the solution to the first equation is or .  Substituting this into the second equation results
&~%O%O in , or equivalently,  .  The solutions are then %b %~ %~f ²Á³Á²Á³
c c
l l l l l and  , note that    is not a solution.  ²Á³²Á³c  c    l l l l U Points in  l  are denoted by  in rectangular coordinates.  The distance between the ²%Á&Á'³points    and    is  .
²%Á&Á'³²%Á&Á'³²%c %³b ²&c &³b ²'c '³              l A plane in 3-dimensional space can be represented in the form  .
(%b )&b *'b +~

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。