Matlab函数boxplot(箱形图)的用法.txt你不能让所有人满意,因为不是所有的人都是人成功人士是—在牛B的路上,一路勃起你以为我会眼睁睁看着你去送死吗?我会闭上眼睛的标题:Matlab函数boxplot(箱形图)的用法
出处:讶究'Blog
时间:Thu, 22 Apr 2010 15:41:07 +0000
作者:admin
地址:www.vcbeta/read.php/332.htm
内容:
  箱形图(Box-plot)又称为箱须图(Box-whisker Plot)、盒须图、盒式图或箱线图,是一种用作显示一组数据分散情况资料的统计图。因型状如箱子而得名。在各种领域也经常被使用,常见于品质管理。
  箱形图于1977年由美国著名统计学家 John Tukey发明。它能显示出一组数据的最大值、最
小值、中位数、下四分位数及上四分位数,即是利用数据中的这五个统计量:最小值、第一四分位数、中位数、第三四分位数与最大值来描述数据的一种方法,它也可以粗略地看出数据是否具有有对称性,分布的分散程度等信息,特别可以用于对几个样本的比较。
  画图步骤:  1、画数轴,度量单位大小和数据批的单位一致,起点比最小值稍小,长度比该数据批的全距稍长。  2、画一个矩形盒,两端边的位置分别对应数据批的上下四分位数(Q1和Q3)。在矩形盒内部中位数(Xm)位置画一条线段为中位线。  3、在Q3+1.5IQR(四分位距)和Q1-1.5IQR处画两条与中位线一样的线段,这两条线段为异常值截断点,称其为内限;在F+3IQR和F-3IQR处画两条线段,称其为外限。处于内限以外位置的点表示的数据都是异常值,其中在内限与外限之间的异常值为温和的异常值(mild outliers),在外限以外的为极端的异常值(extreme outliers)。  4、从矩形盒两端边向外各画一条线段直到不是异常值的最远点,表示该批数据正常值的分布区间。  5、用“〇”标出温和的异常值,用“*”标出极端的异常值。相同值的数据点并列标出在同一数据  线位置上,不同值的数据点标在不同数据线位置上。至此一批数据的箱线图便绘出了。统计软件绘制的箱线图一般没有标出内限和外限。  箱线图的功能  箱线图作为描述统计的工具之一,其功能有独特之处,主要有以下几点:  1.直观明了地识别数据批中的异常值 一批数据
中的异常值值得关注,忽视异常值的存在是十分危险的,不加剔除地把异常值包括进数据的计算分析过程中,对结果会带来不良影响;重视异常值的出现,分析其产生的原因,常常成为发现问题进而改进决策的契机。箱线图为我们提供了识别异常值的一个标准:异常值被定义为小于Q1-1.5IQR或大于Q3+1.5IQR的值。虽然这种标准有点任意性,但它来源于经验判断,经验表明它在处理需要特别注意的数据方面表现不错。这与识别异常值的经典方法有些不同。众所周知,基于正态分布的3σ法则或z分数方法是以假定数据服从正态分布为前提的,但实际数据往往并不严格服从正态分布。它们判断异常值的标准是以计算数据批的均值和标准差为基础的,而均值和标准差的耐抗性极小,异常值本身会对它们产生较大影响,这样产生的异常值个数不会多于总数0.7%。显然,应用这种方法于非正态分布数据中判断异常值,其有效性是有限的。箱线图的绘制依靠实际数据,不需要事先假定数据服从特定的分布形式,没有对数据作任何限制性要求,它只是真实直观地表现数据形状的本来面貌;另一方面,箱线图判断异常值的标准以四分位数和四分位距为基础,四分位数具有一定的耐抗性,多达25%的数据可以变得任意远而不会很大地扰动四分位数,所以异常值不能对这个标准施加影响,箱线图识别异常值的结果比较客观。由此可见,箱线图在识别异常值方面有一定的优越性。  2.利用箱线图判断数据批的偏态和尾重  比较标准
正态分布、不同自由度的t分布和非对称分布数据的箱线图的特征,可以发现:对于标准正  态分布的大样本,只有 0.7%的值是异常值,中位数位于上下四分位数的中央,箱线图的方盒关于中位线对称。选取不同自由度的t分布的大样本,代表对称重尾分布,当t分布的自由度越小,尾部越重,就有越大的概率观察到异常值。以卡方分布作为非对称分布的例子进行分析,发现当卡方分布的自由度越小,异常值出现于一侧的概率越大,中位数也越偏离上下四分位数的中心位置,分布偏态性越强。异常值集中在较小值一侧,则分布呈现左偏态;;异常值集中在较大值一侧,则分布呈现右偏态。下表列出了几种分布的样本数据箱线图的特征(样本数据由SAS的随机数生成函数自动生成),验证了上述规律。这个规律揭示了数据批分布偏态和尾重的部分信息,尽管它们不能给出偏态和尾重程度的精确度量,但可作为我们粗略估计的依据。  3.利用箱线图比较几批数据的形状  同一数轴上,几批数据的箱线图并行排列,几批数据的中位数、尾长、异常值、分布区间等形状信  息便昭然若揭。在一批数据中,哪几个数据点出类拔萃,哪些数据点表现不及一般,这些数据点放在同类其它体中处于什么位置,可以通过比较各箱线图的异常值看出。各批数据的四分位距大小,正常值的分布是集中还是分散,观察各方盒和线段的长短便可明了。每批数据分布的偏态如何,分析中位线和异常值的位置也可估计出来。还有一些箱线图的变种,
使数据批间的比较更加直观明白。例如有一种可变宽度的箱线图,使箱的宽度正比于批量的平方根,从而使批量大的数据批有面积大的箱,面积大的箱有适当的视觉效果。如果对同类体的几批数据的箱线图进行比较,分析评价,便是常模参照解释方法的可视图示;如果把受测者数据批的箱线图与外在效标数据批的箱线图比较分析,便是效标参照解释的可视图示。箱线图结合这些分析方法用于质量管理、人事测评、探索性数据分析等统计分析活动中去,有助于分析过程的简便快捷,其作用显而易见。
normrnd函数用法
  格式如下  boxplot(X):产生矩阵X的每一列的盒图和“须”图,“须”是从盒的尾部延伸出来,并表示盒外数据长度的线,如果“须”的外面没有数据,则在“须”的底部有一个点。  boxplot(X,notch):当notch=1时,产生一凹盒图,notch=0时产生一矩箱图。  boxplot(X,notch,'sym'):sym表示图形符号,默认值为“+”。  boxplot(X,notch,'sym',vert) %当vert=0时,生成水平盒图,vert=1时,生成竖直盒图(默认值vert=1)。  boxplot(X,notch,'sym',vert,whis) %whis定义“须”图的长度,默认值为1.5,若whis=0则boxplot函数通过绘制sym符号图来显示盒外的所有数据值。
  例一:创建一个汽车里程箱形图,按国家分组:
  >> load carsmall;  >> boxplot(MPG,Origin);
 
  例二:创建2组正态分布样本的缺口箱形图
  >> x1 = normrnd(5,1,100,1);  >> x2 = normrnd(6,1,100,1);  >> boxplot([x1,x2],'notch','on');
 
  这两个体之间的中位数分别约为1。由于在箱形图的缺口不重叠,你可以得出结论,95%的信心,是真正的中位数并不相同。
  The following figure shows the box plot for the same data with the length of the whiskers specified as 1.0 times the interquartile range. Points beyond the whiskers are displayed using +.
  >> boxplot([x1,x2],'notch','on','whisker',1);
 
Generated by Bo-blog 2.1.1 Release

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。