二.三维绘图
一.绘制三维曲线的基本函数
最基本的三维图形函数为plot3,它将二维绘图函数plot的有关功能扩展到三维空间,可以用来绘制三维曲线。其调用格式为:
plot3(x1,y1,z1,选项1,x2,y2,z2,选项2,…)
其中每一组x,y,z组成一组曲线的坐标参数,选项的定义和plot的选项一样。当x,y,z是同维向量时,则x,y,z对应元素构成一条三维曲线。当x,y,z是同维矩阵时,则以x,y,z对应列元素绘制三维曲线,曲线条数等于矩阵的列数。
例513 绘制空间曲线
该曲线对应的参数方程为
t=0:pi/50:2*pi;
x=8*cos(t);
y=4*sqrt(2)*sin(t);
z=-4*sqrt(2)*sin(t);
plot3(x,y,z,'p');
title('Line in 3-D Space');
text(0,0,0,'origin');
xlabel('X');ylabel('Y');zlabel('Z');grid;
二.三维曲面
1.平面网格坐标矩阵的生成
当绘制z=f(x,y)所代表的三维曲面图时,先要在xy平面选定一矩形区域,假定矩形区域为D=[a,b]×[c,d],然后将[a,b]在x方向分成m份,将[c,d]在y方向分成n份,由各划分点做平行轴的直线,把区域D分成m×n个小矩形。生成代表每一个小矩形顶点坐标的平面网格坐标矩阵,最后利用有关函数绘图。
产生平面区域内的网格坐标矩阵有两种方法:
利用矩阵运算生成。
x=a:dx:b;
y=(c:dy:d)’;
X=ones(size(y))*x;
Y=y*ones(size(x));
经过上述语句执行后,矩阵X的每一行都是向量x,行数等于向量y的元素个数,矩阵Y的每一列都是向量y,列数等于向量x的元素个数。
利用meshgrid函数生成;
x=a:dx:b;
y=c:dy:d;
[X,Y]=meshgrid(x,y);
语句执行后,所得到的网格坐标矩阵和上法,相同,当x=y时,可以写成meshgrid(x)
2.绘制三维曲面的函数
Matlab提供了mesh函数和surf函数来绘制三维曲面图。mesh函数用来绘制三维网格图,而surf 用来绘制三维曲面图,各线条之间的补面用颜填充。其调用格式为:
mesh(x,y,z,c)
surf(x,y,z,c)
一般情况下,x,y,z是维数相同的矩阵,x,y是网格坐标矩阵,z是网格点上的高度矩阵,c用于指定在不同高度下的颜范围。c省略时,Matlab认为c=z,也即颜的设定是正比于图形的高度的。这样就可以得到层次分明的三维图形。当x,y省略时,把z矩阵的列下标当作x轴的坐标,把z矩阵的行下标当作y轴的坐标,然后绘制三维图形。当x,y是向量时,要求x的长度必须等于z矩阵的列,y的长度必须等于必须等于z的行,x,y向量元素的组合构成网格点的x,y坐标,z坐标则取自z矩阵,然后绘制三维曲线。
例515 用三维曲面图表现函数:
为了便于分析三维曲面的各种特征,下面画出3种不同形式的曲面。
%program 1
x=0:0.1:2*pi;
[x,y]=meshgrid(x);
z=sin(y).*cos(x);
mesh(x,y,z);
normrnd函数用法xlabel('x-axis'),ylabel('y-axis'),zlabel('z-axis');
title('mesh'); pause;
%program 2
x=0:0.1:2*pi;
[x,y]=meshgrid(x);
z=sin(y).*cos(x);
surf(x,y,z);
xlabel('x-axis'),ylabel('y-axis'),zlabel('z-axis');
title('surf'); pause;
%program 3
x=0:0.1:2*pi;
[x,y]=meshgrid(x);
z=sin(y).*cos(x);
plot3(x,y,z);
xlabel('x-axis'),ylabel('y-axis'),zlabel('z-axis');
title('plot3-1');grid;
程序执行结果分别如上图所示。从图中可以发现,网格图(mesh)中线条有颜,线条间补面无颜。
曲面图(surf)的线条都是黑的,线条间补面有颜。进一步观察,曲面图补面颜和网格图线条颜都是沿z轴变化的。用plot3 绘制的三维曲面实际上由三维曲线组合而成。可以分析plot(x’,y’,z’)所绘制的曲面的特征。
例516 绘制两个直径相等的圆管相交的图形。
m=30;
z=1.2*(0:m)/m;
r=ones(size(z));
theta=(0:m)/m*2*pi;
x1=r'*cos(theta);y1=r'*sin(theta);%生成第一个圆管的坐标矩阵
z1=z'*ones(1,m+1);
x=(-m:2:m)/m;
x2=x'*ones(1,m+1);y2=r'*cos(theta);%生成第一个圆管的坐标矩阵
z2=r'*sin(theta);
surf(x1,y1,z1); %绘制竖立的圆管
axis eq l ,axis off
hold on
surf(x2,y2,z2); %绘制平放的圆管
axis eq l ,axis off
title ('两个等直径圆管的交线');
hold off
例517 分析由函数构成的曲面形状与平面z=a的交线。
此外,还有两个和mesh函数相似的函数,即带等高线的三维网格曲面函数meshc和带底座的三维网格曲面函数meshz,其用法和mesh类似。不同的是,meshc还在xy平面上绘制曲面在z轴方向的等高线,meshz还在xy平面上绘制曲面的底座。
surf函数也有两个类似的函数,即具有等高线的曲面函数surfc和具有光照效果的曲面函数surfl。
例518 在xy平面内选择[-8, 8]×[-8, 8]绘制函数,
[x,y]=meshgrid(-8:0.5:8);
z=sin(sqrt(x.^2+y.^2))./sqrt(x.^2+y.^2+eps);
s plot(2,2,1);
meshc(x,y,z);
title('meshc');
s plot(2,2,2);
meshz(x,y,z);
title('meshz');
s plot(2,2,3);
surfc(x,y,z);
title('surfc');
s plot(2,2,4);
surfl(x,y,z);
title('surfl');
3.标准三维曲面
Matlab提供了一些函数用于绘制标准三维曲面,这些函数可以产生相应的绘图数据,常用于三维图形的演示。如,sphere函数和cylinder函数分别用于绘制三维球面和柱面。sphere函数的调用格式为:
[x,y,z]=sphere(n);
该函数将产生(n+1)×(n+1矩阵x,y,z 。采用这三个矩阵可以绘制出圆心位于原点、半径为1的单位球体。若在调用该函数时不带输出参数,则直接绘制所需球面。n决定了球面的圆滑程度,其默认值为20。若n值取的比较小,则绘制出多面体的表面图。
cylinder函数的调用格式为:
[x,y,z]=cylinder(R,n)
其中R是一个向量,存放柱面各个等间隔高度上的半径,n表示在圆柱圆周上有n个间隔点,默认有20个间隔点。如:cylinder(3)生成一个圆柱,cylinder([10,1])生成一个圆锥。而t=0:pi/100:4*pi; R=sin(t); cylinder(R,30);生成一个正弦圆柱面。
另外Matlab还提供了一个peaks函数,称为多峰函数,常用于三维曲面的演示。该函数可以用来生成绘图数据矩阵,矩阵元素由函数:
在矩形区域[-3 3]×[-3 3]的等分网格点上的函数值确定。如:z=peaks(30)
将生成一个30×30矩阵,
例519 绘制标准三维曲面图形
t=0:pi/20:2*pi;
[x,y,z]=cylinder(2+sin(t),30);
s plot(1,3,1);
surf(x,y,z);
s plot(1,3,2);
[x,y,z]=sphere;
surf(x,y,z);
s plot(1,3,3);
[x,y,z]=peaks(30);
meshz(x,y,z);
3.其他三维图形。
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论