[unifit ]函数----均匀分布的参数估计
[aht bat ]=unifit(x)
[ahat bhat,ACI,BCI ]=unifit(x)
[aht bat,ACI,BCI ]=unifit(x,ALPHA)
[normfit]函数 正态分布的参数估计
[muhat,sigmahat] = normfit(data)[muhat,sigmahat,muci,sigmaci] = normfit(data)[muhat,sigmahat,muci,sigmaci] = normfit(data,alpha)[...] = normfit(data,alpha,censoring)[...] = normfit(data,alpha,censoring,freq)[...] = normfit(data,alpha,censoring,freq,options)
Muhat(u的估计值)
sigmahat(q的估计值)
muci,sigmaci(区间)
data = normrnd(10,2,100,2);
[mu,sigma,muci,sigmaci] = normfit(data)
mu =
10.1455 10.0527
sigma =
1.9072 2.1256
muci =
9.7652 9.6288
10.5258 10.4766
sigmaci =
1.6745 1.8663
2.2155 2.4693
二项分布的参数估计
【 binofit】函数
phat = binofit(x,n)
[phat,pci] = binofit(x,n)
[phat,pci] = binofit(x,n,alpha)
r = binornd(100,0.6)
[phat,pci] = binofit(r,100)
r =
normrnd函数用法 55
phat =
0.5500
pci =
0.4473 0.6497
[betafit]函数 –计算beta分布的参数估计
phat = betafit(data)
[phat,pci] = betafit(data,alpha)Description
data = betarnd(4,3,100,1);
[p,ci] = betafit(data,0.01)
p =
3.9081 3.0022
ci =
2.4864 1.8530
5.3299 4.1513
[expfit]函数—指数分布的参数估计
parmhat = expfit(data)
[parmhat,parmci] = expfit(data)
[parmhat,parmci] = expfit(data,alpha)
[...] = expfit(data,alpha,censoring)
[...] = expfit(data,alpha,censoring,freq)
data = exprnd(3, 100, 1);
[parmhat, parmci] = expfit(data, 0.01)
parmhat =
3.0398
parmci =
2.3817
3.9934
【poissfit】函数---泊松分布
lambdshat = poissfit(data)
[lambdahat,lambdaci] = poissfit(data)
[lambdahat,lambdaci] = poissfit(data,alpha)
r = poissrnd(5,10,2);
[l,lci] = poissfit(r)
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论