OI笔记]后缀数组学习笔记--后缀数组解题方法总结
2010-04-15 07:37
后缀数组是处理字符串的有力工具。后缀数组是后缀树的一个非常精巧的替代品,它比后缀树容易编程实现,能够实现后缀树的很多功能而时间复杂度也并不逊,而且它比后缀树所占用的内存空间小很多。可以说,后缀数组比后缀树要更为实用。自从拜读了罗穗骞大牛的WC2009论文《后缀数组——处理字符串的有力工具》后,经过若干星期的努力(中间有因某些原因而缓下来),终于把论文上面的练习题全部完成了,现在写写自己对后缀数组的理解和感悟。在看本笔记时,请不要忘记了,这是笔记,而教材是《后缀数组——处理字符串的有力工具》。
一:后缀数组的实现
1、定义:Suffix Array数组(SA数组)用于保存从小到大排好序之后的后缀。RANK名次数组用来保存后缀]在所有后缀中是第几小的后缀。简单来说,SA数组表示的是“排第几的是谁”,RANK数组表示的是“你的排名是多少”。
2、求SA数组以及RANK数组的方法:详细的请转到罗穗骞大牛的论文,我的学习笔记重点不是要介绍这个。
3、对DA(倍增算法)的一些个人理解:由于我只学习了倍增算法,所以我只能谈谈我对它的理解。DC3算法我没有去研究....
DA算法我是根据罗穗骞的模板写的,根据自己的理解做了些许的小优化。我们现在来看看罗穗骞大牛的模板:
int wa[maxn],wb[maxn],wv[maxn],ws[maxn];
int cmp(int *r,int a,int b,int l)
{return r[a]==r[b]&&r[a+l]==r[b+l];}
void da(int *r,int *sa,int n,int m)
{
int i,j,p,*x=wa,*y=wb,*t;
for(i=0;i<m;i++) ws[i]=0;
for(i=0;i<n;i++) ws[x[i]=r[i]]++;
for(i=1;i<m;i++) ws[i]+=ws[i-1];
for(i=n-1;i>=0;i--) sa[--ws[x[i]]]=i;
for(j=1,p=1;p<n;j*=2,m=p)
{
令数组全部的值为0for(p=0,i=n-j;i<n;i++) y[p++]=i;
for(i=0;i<n;i++) if(sa[i]>=j) y[p++]=sa[i]-j;
for(i=0;i<n;i++) wv[i]=x[y[i]];
for(i=0;i<m;i++) ws[i]=0;
for(i=0;i<n;i++) ws[wv[i]]++;
for(i=1;i<m;i++) ws[i]+=ws[i-1];
for(i=n-1;i>=0;i--) sa[--ws[wv[i]]]=y[i];
for(t=x,x=y,y=t,p=1,x[sa[0]]=0,i=1;i<n;i++)
x[sa[i]]=cmp(y,sa[i-1],sa[i],j)?p-1:p++;
}
return;
}
其实,我个人认为,对于这个算法以及代码,无需过分深入地理解,只需记忆即可,理解只是为了帮助记忆罢了。先解释变量:n为字符串长度,m为字符的取值范围,r为字符串。后面的j为每次排序时子串的长度。
for(i=0;i<m;i++) ws[i]=0;
for(i=0;i<n;i++) ws[x[i]=r[i]]++;
for(i=1;i<m;i++) ws[i]+=ws[i-1];
for(i=n-1;i>=0;i--) sa[--ws[x[i]]]=i;
这四行代码,进行的是对R中长度为1的子串进行基数排序。x数组在后面需要用到,所以先复制r数组的值。特别需要注意的是,第四行的for语句,初始化语句为i=n-1,如果写得不太熟练,很容易习惯性地写成i=0,我一开始就是。理解这是基数排序的最好方法,个例子,自己推推....
for(p=0,i=n-j;i<n;i++) y[p++]=i;
for(i=0;i<n;i++) if(sa[i]>=j) y[p++]=sa[i]-j;
这两行代码,利用了上一次基数排序的结果,对待排序的子串的第二关键字进行了一次高效地基数排序。我们可以结合下面的图来理解:
不难发现,除了第一次基数排序以外,之后的每次双关键字排序,设此次排序子串长度为j,则从第n-j位开始的子串,其第二关键字均为0,所以得到第一个for语句:
for(p=0,i=n-j;i<n;i++) y[p++]=i;使用pascal的朋友们注意了,这里之所以是n-j位,是因为c++的字符串是从第0位开始表示的。这里,p暂时成为了一个计数变量。第二个语句的意义,分析上图也不难理解,这里留给朋友们你们自行思考啦。(不如说我懒...)
for(i=0;i<n;i++) wv[i]=x[y[i]];
for(i=0;i<m;i++) ws[i]=0;
for(i=0;i<n;i++) ws[wv[i]]++;
for(i=1;i<m;i++) ws[i]+=ws[i-1];
for(i=n-1;i>=0;i--) sa[--ws[wv[i]]]=y[i];
与一开始的4个for语句意义相同,基数排序。至于为什么wv[i]=x[y[i]],这个我想了蛮久没想通...硬记算了- -哪位朋友理解的希望能告诉我一声...
for(t=x,x=y,y=t,p=1,x[sa[0]]=0,i=1;i<n;i++)
x[sa[i]]=cmp(y,sa[i-1],sa[i],j)?p-1:p++;
这个for语句中的初始化语句里,完成了x数组和y数组的交换,用了指针的交换节约时间,
简化代码。这里需要注意的是p和i的初始值都是1,不是0.其实如果记得后面的语句,不难看出它们的初始值不能为0,因为后面有i-1和p-1嘛。这个for语句的意义要结合cmp函数来理解。反正,你知道这里p的值表示的是此时关键字不同的串的数量就对了。当p=n的时候,说明所有串都已经排好序了(它们的排名都唯一确定)。所以,一开始的循环语句中,循环条件是(p<n)。
另外,在使用倍增算法前,需要保证r数组的值均大于0。然后要在原字符串后添加一个0号字符,具体原因参见罗穗骞的论文。这时候,若原串的长度为n,则实际要进行后缀数组构建的r数组的长度应该为n+1.所以调用da函数时,对应的n应为n+1.
二、后缀数组的应用--height数组
在介绍后缀数组的应用前,先介绍后缀数组的一个重要附属数组:height数组。
1、height 数组:定义height[i]=suffix(sa[i-1])和suffix(sa[i])的最长公
共前缀,也就是排名相邻的两个后缀的最长公共前缀。
height数组是应用后缀数组解题是的核心,基本上使用后缀数组解决的题目都是依赖height 数组完成的。
2、height数组的求法:具体的求法参见罗穗骞的论文。对于height数组的求法,我并没有去深刻理解,单纯地记忆了而已...有兴趣的朋友可以去钻研钻研再和我交流交流
这里给出代码:
int rank[maxn],height[maxn];
void calheight(int *r,int *sa,int n)
{
int i,j,k=0;
for(i=1;i<=n;i++) rank[sa[i]]=i;
for(i=0;i<n;height[rank[i++]]=k)
for(k?k--:0,j=sa[rank[i]-1];r[i+k]==r[j+k];k++);
return;
}
3、一些注意事项:height数组的值应该是从height[1]开始的,而且height[1]应该是等于0的。原因是,因为我们在字符串后面添加了一个0号字符,所以它必然是最小的一个后缀。而字符串中的其他字符都应该是大于0的(前面有提到,使用倍增算法前需要确保这点),所以排名第二的字符串和0号字符的公共前缀(即height[1])应当为0.在调用calheight函数时,要注意height数组的范围应该是[1..n]。所以调用时应该是calheight(r,sa,n)而不是calheight(r,sa,n+1)。要理解清楚这里的n的含义是什么。
calheight过程中,对rank数组求值的for语句的初始语句是i=1而不是i=0的原因,和上面说的类似,因为sa[0]总是等于那个已经失去作用的0号字符,所以没必要求出其rank值。当然你错写成for (i=0..),也不会有什么问题。
三、后缀数组解题总结:
1、求单个子串的不重复子串个数。SPOJ 694、SPOJ 705.
这个问题是一个特殊求值问题。要认识到这样一个事实:一个字符串中的所有子串都必然是它的后缀的前缀。(这句话稍微有点绕...)对于每一个sa[i]后缀,它的起始位置sa[i],那么它最多能得到该后缀
长度个子串(n-sa[i]个),而其中有height[i]个是与前一个后缀相同的,所以它能产生的实际后缀个数便是n-sa[i]-height[i]。遍历一次所有的后缀,将它产生的后缀数加起来便是答案。
代码及题解:hi.baidu/fhnstephen/blog/item/68f919f849748668024f56fb.html
2、后缀的最长公共前缀。(记为lcp(x,y))
这是height数组的最基本性质之一。具体的可以参看罗穗骞的论文。后缀i和后缀j的最长公共前缀的长度为它们在sa数组中所在排位之间的height值中的最小值。这个描述可能有点乱,正规的说,令x=rank[i],y=rank[j],x<y,那么
lcp(i,j)=min(height[x+1],height[x+2]...height[y])。lcp(i,i)=n-sa[i]。解决这个问题,用RMQ的ST算法即可(我只会这个,或者用最近公共祖先那个转化的做法)。
3、最长重复子串(可重叠)
要看到,任何一个重复子串,都必然是某两个后缀的最长公共前缀。因为,两个后缀的公共前缀,它出现在这两个后缀中,并且起始位置时不同的,所以这个公共前缀必然重复出现两次以上(可重叠)。而任何两个后缀的最长公共前缀为某一段height值中的最小值,所以最大为height值中的最大值(即某个lcp(sa[i],sa[i+1]))。所以只要算出height数组,然后输出最大值就可以了。
一道题目和代码:
hi.baidu/fhnstephen/blog/item/4ed09dffdec0a78eb801a0ba.html
4、最长重复不重叠子串 PKU1743
这个问题和3的唯一区别在于能否重叠。加上不能重叠这个限制后,直接求解比较困难,所以我们选择二分枚举答案,将问题转换为判定性问题。假设当时枚举的长度为k,那么要怎样判断是否存在长度为k的重复不重叠子串呢?
首先,根据height数组,将后缀分成若干组,使得每组后缀中,后缀之间的height值不小于k。这样分组之后,不难看出,如果某组后缀数量大于1,那么它们之中存在一个公共前缀,其长度为它们之间的height值的最小值。而我们分组之后,每组后缀之间height值的最小值大于等于k。所以,后缀数大于1的分组中,有可能存在满足题目限制条件的长度不小于k的
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论