指导教师:       赵峰               
                       
2012年 4 月 25 日
原创性声明
  
本人郑重声明: 所提交的学位论文是本人在导师指导下, 独立进行研究取得的成果. 除文中已经注明引用的内容外, 论文中不含其他人已经发表或撰写过的研究成果, 也不包含为获得聊城大学或其他教育机构的学位证明书而使用过的材料. 对本文的研究做出重要贡献的个人和集体, 均已在文中以明确方式标明. 本人承担本声明的相应责任.

学位论文作者签名:           日期       
指 导 教 师 签 名:       日期     
                 

摘  要
正交变换是欧氏空间中一类重要的变换,是保持度量不变的变换,正因为它有这一特征,使正交变换在高等代数中起着重要的作用.不仅如此,它在其它领域也有着广泛的应用,如在积分应用中,在多重积分及其曲面积分等方面.本文简单的介绍了正交变换的定义及其性质,讨论了正交变换化二次标准型的步骤及其广泛应用,运用正交变换进行变量替换是将数学分析与代数方法结合的例证,证明第一类曲面积分和重积分在正交变换下的不变性。因而可将其应用于简化多元函数积分计算cari正交变换的此类应用充分体现了一般化、代数化、模型化的数学方法论。
关键词:正交变换;二次型变量替换分;曲面积分;数学方法论

Abstract
The orthogonal transformation, a transformation that maintains the measure invariable, is one of the most important transformations in the field of euclidean space.Benifiting from this feature, it plays an important role in the advanced algebra. Furthermore,it applies widely in many other fields,such as the applications of integration, like the multiple integrations , the surface integrations and so on. This paper introduces the definition and properties of the orthogonal transformation briefly,it also discusses the procedures and wide applications of the secondary standard of the orthogonal transformation, using the orthogonal transformation to make a variable substitution is a good instance to prove  the perfect combination of the mathematical analysis and algebraic approach,it demonstrates the invariance of the the first class of the surface integrations and double integrations  under the orthogonal transformation. Thus,the orthogonal transformation can be applied  i
n( the  numerical integration of simplifying the function of many cariables. This kind of application of the  orthogonal transformation fully embodies such mathematical methodologies as the generalizationthe algebraization, and the modeling.

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。