python卡⽅分箱算法_python基于卡⽅值分箱算法的实现⽰例原理很简单,初始分20箱或更多,先确保每箱中都含有0,1标签,对不包含0,1标签的箱向前合并,计算各箱卡⽅值,对卡⽅值最⼩的箱向后合并,代码如下
import pandas as pd
import numpy as np
import scipy
from scipy import stats
def chi_bin(DF,var,target,binnum=5,maxcut=20):
'''
DF:data
var:variable
target:target / label
binnum: the number of bins output
maxcut: initial bins number
'''
data=DF[[var,target]]
#equifrequent cut the var into maxcut bins
data["cut"],breaks=pd.qcut(data[var],q=maxcut,duplicates="drop",retbins=True)
#count 1,0 in each bin
count_1=data.loc[data[target]==1].groupby("cut")[target].count()
count_0=data.loc[data[target]==0].groupby("cut")[target].count()
#get bins value: min,max,count 0,count 1
bins_value=[*zip(breaks[:maxcut-1],breaks[1:],count_0,count_1)]
#define woe
def woe_value(bins_value):
df_woe=pd.DataFrame(bins_value)
lumns=["min","max","count_0","count_1"]
df_woe["total"]=unt_1+unt_0
df_woe["bad_rate"]=unt_1/al
df_woe["woe"]=np.log((unt_0/unt_0.sum())/(unt_1/unt_1.sum()))
return df_woe
#define iv
def iv_value(df_woe):
rate=(unt_0/unt_0.sum())-(unt_1/unt_1.sum())
iv=np.sum(rate * df_woe.woe)
return iv
#make sure every bin contain 1 and 0
##first bin merge backwards
for i in range(len(bins_value)):
if 0 in bins_value[0][2:]:
bins_value[0:2]=[(
bins_value[0][0],
bins_value[1][1],
bins_value[0][2]+bins_value[1][2],
bins_value[0][3]+bins_value[1][3])]
continue
##bins merge forwards
if 0 in bins_value[i][2:]:
bins_value[i-1:i+1]=[(
bins_value[i-1][0],
bins_value[i][1],
bins_value[i-1][2]+bins_value[i][2],
bins_value[i-1][3]+bins_value[i][3])]
break
else:
break
#calculate chi-square merge the minimum chisquare while len(bins_value)>binnum:
chi_squares=[]
for i in range(len(bins_value)-1):
a=bins_value[i][2:]
b=bins_value[i+1][2:]
chi_square=scipy.stats.chi2_contingency([a,b])[0] chi_squares.append(chi_square)
#merge the minimum chisquare backwards
i = chi_squares.index(min(chi_squares))
bins_value[i:i+2]=[(
bins_value[i][0],
bins_value[i+1][1],
bins_value[i][2]+bins_value[i+1][2],
bins_value[i][3]+bins_value[i+1][3])]
df_woe=woe_value(bins_value)
#print bin number and iv
print("箱数:{},iv:{:.6f}".format(len(bins_value),iv_value(df_woe)))
#return bins and woe information
return woe_value(bins_value)
以下是效果:
初始分成10箱,⽬标为3箱
chi_bin(data,"age","SeriousDlqin2yrs",binnum=3,maxcut=10)
箱数:8,iv:0.184862
快速排序python实现箱数:7,iv:0.184128
箱数:6,iv:0.179518
箱数:5,iv:0.176980
箱数:4,iv:0.172406
箱数:3,iv:0.160015
min max count_0 count_1 total bad_rate woe
0 0.0 52.0 70293 7077 77370 0.091470 -0.266233
1 52.0 61.0 29318 1774 3109
2 0.057056 0.242909
2 61.0 72.0 26332 865 27197 0.031805 0.853755
到此这篇关于python 基于卡⽅值分箱算法的实现⽰例的⽂章就介绍到这了,更多相关python 卡⽅值分箱算法内容请搜索我们以前的⽂章或继续浏览下⾯的相关⽂章希望⼤家以后多多⽀持我们!
时间: 2020-07-17

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。