下面是一个使用Python编写的连续Mountain Car问题的解题代码示例:
```python
import gym
import numpy as np
# 定义连续Mountain Car问题的解决类
class ContinuousMountainCarSolver:
def __init__(self, env):
v = env
self.num_states = env.observation_space.shape[0]
self.num_actions = env.action_space.shape[0]
self.max_iterations = 10000
self.learning_rate = 0.01
self.gamma = 0.99
self.epsilon = 1.0
self.epsilon_decay = 0.995
self.epsilon_min = 0.01
self.weights = np.random.rand(self.num_states)
# 使用当前策略选择动作
def choose_action(self, state):
if np.random.rand() < self.epsilon:
v.action_space.sample()
return np.argmax(np.dot(state, self.weights))
# 更新权重
def update_weights(self, state, action, reward, next_state):
target = reward + self.gamma * np.max(np.dot(next_state, self.weights))
error = target - np.dot(state, self.weights)
self.weights += self.learning_rate * error * state
# 解决连续Mountain Car问题
def solve(self):
for episode in range(self.max_iterations):
state = set()
state = np.reshape(state, [1, self.num_states])
done = False
timesteps = 0
while not done:
timesteps += 1
der()
action = self.choose_action(state)
next_state, reward, done, _ = v.step(action)
next_state = np.reshape(next_state, [1, self.num_states])
self.update_weights(state, action, reward, next_state)
python代码转换 state = next_state
if done:
print(f"Episode {episode} completed in {timesteps} timesteps.")
if episode > 100:
self.epsilon *= self.epsilon_decay
self.epsilon = max(self.epsilon_min, self.epsilon)
# 创建连续Mountain Car环境
env = gym.make('MountainCarContinuous-v0')
# 创建连续Mountain Car问题的解决实例
solver = ContinuousMountainCarSolver(env)
# 解决连续Mountain Car问题
solver.solve()
# 关闭环境
env.close()
```
这段代码使用了OpenAI Gym库中的`gym.make()`函数来创建连续Mountain Car环境。然后,定义了一个`ContinuousMountainCarSolver`类用于解决该问题。在`solve()`方法中,使用ε-greedy策略选择动作,更新权重,并在每个episode结束时进行一些必要的处理。最后,通过调用`solve()`方法来解决连续Mountain Car问题。
请确保已正确安装`gym`库,并且已经安装了支持连续动作空间的`MountainCarContinuous-v0`环境。
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论