联合纹理和光谱特征的高光谱图像分类方法
余健
【摘 要】高光谱图像分类是当前遥感信息处理的热点问题.传统高光谱遥感图像分类方法只利用图像的光谱特征,没有考虑高光谱遥感图像各像素点邻域的空间特征.文中提出了一种联合纹理特征与光谱特征的高光谱图像分类方法.首先,使用灰度共生矩阵提取了高光谱遥感图像每一像素点邻域的贡献较大的六个纹理特征,再联合各像素点的光谱特征,形成纹理-光谱特征.最后,基于支持向量机和极端随机树算法对公开的高光谱遥感图像数据集Indian Pines和Pavia University scene进行分类实验,结果表明该方法相比传统方法取得更高的分类性能.
【期刊名称】《韩山师范学院学报》
【年(卷),期】2017(038)006
【总页数】9页(P18-26)
【关键词】高光谱遥感图像;分类;纹理特征;光谱特征;极端随机树
【作 者】余健
【作者单位】韩山师范学院计算机与信息工程学院,广东潮州 521041
【正文语种】中 文
【中图分类】TP751
1 引 言
高光谱遥感技术通过成像光谱仪能够获取地物几十至上百个电磁波段的光谱信息,形成“图谱合一”的高光谱图像数据.高光谱图像数据是二维空间和一维光谱构成的图像立方体,在图像空间中每个波段是一幅二维图像,而在光谱空间中每个像素(也称为像元)则反映为一条连续光谱响应曲线,不同的物质在高光谱图像中表现为不同的辐射强度.
高光谱遥感图像具有较高的空间平面分辨率以及丰富的地物光谱信息,从而使高精度的地物分类和目标识别成为可能.但由于高光谱数据的波段数目较多,部分波段存在较强的相关性以及冗余信息,抑制了地物分类的性能,甚至产生“维数灾难(Huges)”现象[1].
传统的高光谱遥感图像分类只考虑光谱特征信息,而没有充分利用其空间特征信息,导致分类的准确率不高.越来越多的学者将空间信息融入到高光谱图像的分类中,以提高分类器性能.Li Jun等[2]使用马尔科夫随机场分割的结果作为多类logistic回归分类器的贝叶斯先验,从而将空间信息和基于光谱分类特征的分类器结合起来.He Zhi、Wang Qiang和Shen Yi等[3]利用经验模态分解和形态学小波变换得到光谱和空间特征,基于多任务稀疏学习方法对空谱域特征进行同时分类,达到了较高的分类准确率.Zhang等[4]采用了图像分割和主动学习方法来提升高光谱图像分类性能,取得了不错成果.Chen等[5]则采用了旋转森林和多尺度图像分割法取得了较高的分类准确率.一些学者[6-11]将空间特征和光谱特征相结合提出了多种高光谱图像分类方法,也取得较好效果.
本文通过主成分分析(PCA)算法对高光谱图像进行降维处理,选取主成分最大的一个波段,使用灰度共生矩阵提取其像元空间邻域纹理特征信息,从中选取贡献最大的6个特征,并采用4个不同方向表示,获取了24维纹理特征向量,联合其光谱特征信息,进行地物分类.
2 纹理和光谱特征提取
高光谱遥感图像具有几十到上百个波段,波段间存在较大冗余.如果采用所有波段的平面图像参与分类,则会出现维数灾难现象.因此,需要先采用主成分分析(PCA)方法对高光谱遥感图像进行降维处理,再分类.本文只选择高光谱遥感图像PCA降维后,主成分最大的那个波段的二维图像,作为最能够代表图像空间平面维变化的一个二维平面表征,联合其光谱信息来抑制高光谱图像分类中的“同谱异物”现象,提高分类的准确率.
基于灰度共生矩阵的纹理特征提取方法是纹理分析中常用的方法,该方法的实现原理是图像灰度元素之间的空间相关性,通过计算图像中存在一定相对位置关系(一定方向上,相距一定距离)的某两个像素之间的灰度相关性,建立起图像的一个灰度共生矩阵,并从这个矩阵中统计所需要的特征量来进行图像纹理特征分析.
2.1 灰度共生矩阵pines
一幅图像的灰度共生矩阵能反映出图像灰度关于方向、相邻间隔、变化幅度的综合信息,它是分析图像的局部模式和它们排列规则的基础[12].
设 f(x,y)为一幅二维数字图象,其大小为M×N,灰度级别为Ng,则满足一定空间关系的灰度共生矩阵为
其中#(x)表示集合x中的元素个数,显然P为Ng×Ng的矩阵,若(x1,y1)与(x2,y2)间距离为d,两者与坐标横轴的夹角为θ,则可以得到各种间距及角度的灰度共生矩阵P(i,j,d,θ).
对距离为d,水平方向(即θ=0)的灰度共生矩阵计算公式为
同理可得其他三个方向的灰度共生矩阵.
在得到了上述灰度共生矩阵后,可以从中计算出一些能够反映图像纹理特征的向量,有二阶距、对比度、相关、熵、方差、逆差距、和平矩、和方差、和熵、差平均、差方差、差熵等14个特征向量,本文采用了其中贡献最大的6个特征,分别为:角二阶矩(ASM)、相关(Correlation)、对比度(Contrast)、熵(Entropy)、相异性(Dissimilarity)和逆差距(Homogeneity),统称为GLCM-6.
2.2 GLCM-6特征
(a)角二阶矩(ASM):反应图像的灰度分布以及纹理颗粒的粗细,也被称为能量,描述的是灰度共生矩阵中所有元素的平方和.ASM值越大,说明图像的纹理分布越均匀,变化越规矩.
(b)相关(Correlation):用于反映图像中的像素的灰度相关性,描述的是灰度共生矩阵中行或列间的矩阵元素的相似程度,若矩阵元素相似程度越大,则相关度越大,图像纹理特征的灰度相关性越大.
其中 μi、 μj、 σi、σj的定义如下
(c)对比度(Contrast):用于反映图像的纹理深浅和清晰度,灰度共生矩阵中的灰度相差较大的像素对越多,其对比度越大,对应的,其纹理沟纹越深,清晰度越好.
(d)熵(Entropy):用于反映图像纹理特征的复杂度,熵是信息量的度量,其值越大,表明灰度共生矩阵中的元素越分散,图像的纹理分布越均匀.
(e)相异性(Dissimilarity):同对比度类似,但在计算灰度差时所采取的增长方式与计算对比度时不同,对比度计算时期灰度差权值权重呈指数增长,相异性的计算权重呈线性增长.
(f)逆差距(Homogeneity):用于反映图像的不同局部区域间的相异性,逆差距越大,说明图像不同局部区域间的纹理变化越小,其纹理在局部区域分布得越均匀.
2.3 高斯归一化方法
本文使用灰度共生矩阵提取其像元空间邻域纹理特征信息,从中选取贡献最大的6个特征,即GLCM-6,并采用4个不同方向(0°,45°,90°,135°)表示,获取了24维纹理特征向量.对获得的24维纹理特征,选用高斯归一化方法进行处理,方便分类器的训练.归一化公式如下
其中,μ、σ分别为原始数据集的均值和方差,上标(n)表示n维特征向量,取n=24,μj,σj表示第j维的均值、方差.使用3σj进行归一化,保证了V(n)的值落在[-1,1]区间上的概率接近100%,对于离点,小于-1则置-1,大于1则置1.对特征向量采用高斯归一化至[-1,1]区间内,然后用归一化后的数据进行分类.经测试,经过高斯归一化后的特征,可以加快分类的训练速度,也能够提高准确率.
2.4 联合纹理和光谱特征
假设高光谱遥感图像使用PCA降维后主成分最大的波段平面图像为X.不失一般性,设高光谱图像中任意像元xi,提取像元xi的k×k邻域矩阵的GLCM-6的纹理特征,并将其展开形成一个24维和向量ti.
再设像元xi的光谱特征为si,设该高光谱遥感图像具有m个波段,则像元xi的纹理-光谱特征为:
该特征具有24+m维.提取纹理和光谱特征之后,分别采用支持向量机(SVM)和扩展随机森林方法训练分类器,并进行高光谱遥感图像地物分类实验.
3 分类算法
3.1 SVM算法
支持向量机(Support Vector Machine,SVM)是Cortes和Vapnik于1995年首先提出的[13],它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中.
支持向量机方法是建立在统计学习理论的VC维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的泛化能力.本文选用引入RBF核函数的支持向量机算法,以获得非线性分类能力.
3.2 极端随机树
极端随机树(Extremely randomized trees,ERT)是由PierreGeurts等人于2006年提出[14,15].该算法与随机森林算法十分相似,都是由许多决策树集成的分类器.但与随机森林分类器相比,主要有两点不同:
一是不采用随机森林bootstrap采样替换策略,即对于每棵树,它们使用的训练集是从总的训练集中有放回采样出来的,这意味着,总的训练集中的有些样本可能多次出现在一棵树的训练集中,也可能从未出现在一棵树的训练集中.而是直接采用原始的训练样本,目的在于减少偏差.
二是在对每棵决策树的节点划分时,先随机选取特征的一个子集,在对数据进行划分时,则是对子集中的每个特征随机选取一个划分阈值,然后从这些划分条件中选取划分效果最好的一个做为当前节点的最终划分依据.极端随机树完全随机地选择特征,得到的结果相比随机森林方差更小、更稳定.

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。