《高等数学》目录与2010数三大纲对照的重点 计划用时(天)
标记及内容要求:
★─大纲中要求“掌握”和“会”的内容以及对学习高数特别重要的内容,应当重点加强,
对其概念、性质、结论及使用方法熟知,对重要定理、公式会推导。要大量做题。
☆─大纲中要求“理解”和“了解”的内容以及对学习高数比较重要的内容,要看懂定理、公式的推导,知道其概念、性质和方法,能使用其结论做题。要大量做题。
●─大纲中没有明确要求,但对做题和以后的学习有帮助。要能看懂,了解其思路和结论。
▲─超出大纲要求。
第一章 函数与极限
第一节 映射与函数 (☆集合、影射,★其余)
第二节 数列的极限 (☆)
第三节 函数的极限 (☆)
第四节 无穷小与无穷大 (★)
第五节 极限运算法则 (★)
第六节 极限存在准则 (★)
第七节 无穷小的比较 (★)
第八节 函数的连续性与间断点 (★)
第九节 连续函数的运算与初等函数的连续性 (★)
第十节 闭区间上连续函数的性质 (★)
总习题
第二章 导数与微分
第一节 导数概念(★)
第二节 函数的求导法则(★)
第三节 高阶导数(★)
第四节 隐函数及由参数方程所确定的函数的导数 相关变化率(★)excel中值公式函数
第五节 函数的微分(★)
总习题二
第三章 微分中值定理与导数的应用
第一节 微分中值定理(★罗尔,★拉格朗日,☆柯西)
第二节 洛必达法则(★)
第三节 泰勒公式(☆)
第四节 函数的单调性与曲线的凹凸性(★)
第五节 函数的极值与最大值最小值(★)
第六节 函数图形的描绘(★)
第七节 曲率(●)
第八节 方程的近似解(●)
总习题三(★注意渐近线)
第四章 不定积分
第一节 不定积分的概念与性质(★)
第二节 换元积分法(★)
第三节 分部积分法(★)
第四节 有理函数的积分(★)
第五节 积分表的使用(★)
总习题四
第五章 定积分
第一节 定积分的概念与性质(☆)
第二节 微积分基本公式(★)
第三节 定积分的换元法和分部积分法(★)
第四节 反常积分(☆概念,★计算)
第五节 反常积分的审敛法 г函数(●)
总习题五
第六章 定积分的应用
第一节 定积分的元素法(★)
第二节 定积分在几何学上的应用(★平面面积,★旋转体,★简单经济应用)
第三节 定积分在物理学上的应用 (★求函数平均值)
总习题六、
第七章 微分方程
第一节 微分方程的基本概念(☆)
第二节 可分离变量的微分方程(☆)(★掌握求解方法)
第三节 齐次方程(☆)(★掌握求解方法)
第四节 一阶线性微分方程(☆)(★掌握求解方法)
第五节 可降阶的高阶微分方程(☆)
第六节 高阶线性微分方程(☆)
第七节 常系数齐次线性微分方程 (★二阶的)
第八节 常系数非齐次线性微分方程(★二阶的)
第九节 欧拉方程(●)
第十节 常系数线性微分方程组解法举例(●)
总习题七
附录I 二阶和三阶行列式简介附录II 几种常用的曲线附录、积分表
第八章 空间解析几何与向量代数 (▲)
第一节 向量及其线性运算
第二节 数量积 向量积 混合积
第三节 曲面及其方程
第四节 空间曲线及其方程
第五节 平面及其方程
第六节 空间直线及其方程
总习题八
第九章 多元函数微分法及其应用
第一节 多元函数的基本概念(☆)
第二节 偏导数(☆概念。★计算)
第三节 全微分 (☆概念。★计算)
第四节 多元复合函数的求导法则 (☆概念。★计算)
第五节 隐函数的求导公式(☆) (★掌握求导方法)
第六节 多元函数微分学的几何应用 (☆)
第七节 方向导数与梯度(●)
第八节 多元函数的极值及其求法(☆概念。★计算、必要条件)
第九节 二元函数的泰勒公式(●)
第十节 最小二乘法(●)
总习题九
第十章 重积分
第一节 二重积分的概念与性质(☆)
第二节 二重积分的计算法(★)
第三节 三重积分(▲)
第四节 重积分的应用 (★二重积分部分)
第五节 含参变量的积分(●)
总习题十
第十一章 曲线积分与曲面积分(▲)
第一节 对弧长的曲线积分
第二节 对坐标的曲线积分
第三节 格林公式及其应用
第四节 对面积的曲面积分
第五节 对坐标的曲面积分
第六节 高斯公式 通量与散度
第七节 斯托克斯公式 环流量与旋度
总习题十一
第十二章 无穷级数
第一节 常数项级数的概念和性质(☆)(●其中柯西审敛)
第二节 常数项级数的审敛法(★定理1、2及推论、3、4 。 ☆定理6.、7、8。
●定理5、9、10)
第三节 幂级数(☆)
第四节 函数展开成幂级数(☆)
第五节 函数的幂级数展开式的应用 (☆一、二。●三)
第六节 函数项级数的一致收敛性及一致收敛级数的基本性质(▲)
第七节 傅里叶级数(▲)
第八节 一般周期函数的傅里叶级数(▲)
总习题十二
第一章 概率论的基本概念(★)
1 随机试验
2 样本空间、随机事件
3 频率与概率
4 等可能概型(古典概型)
5 条件概率
6 独立性
小结
习题
第二章 随机变量及其分布(★)
1 随机变量
2 离散型随机变量及其分布律
3 随机变量的分布函数
4 连续型随机变量及其概率密度
5 随机变量的函数的分布
小结
习题
第三章 多维随机变量及其分布(★)
1 二维随机变量
2 边缘分布
3 条件分布
4 相互独立的随机变量
5 两个随机变量的函数的分布
小结
习题
第四章 随机变量的数字特征 (★)
1 数学期望
2 方差
3 协方差及相关系数
4 矩、协方差矩阵
小结
习题
第五章 大数定律及中心极限定理
1 大数定律 (☆)
2 中心极限定理 (☆定理,★近似计算)
小结
习题
第六章 样本及抽样分布
1 随机样本(☆)
2 直方图和箱线图(☆)
3 抽样分布(★)
小结
附录
习题
第七章 参数估计
1 点估计(★)
2 基于截尾样本的最大似然估计 ( ●)
3 估计量的评选标准( ●)
4 区间估计( ●)
5 正态总体均值与方差的区间估计( ●)
6 (0-1)分布参数的区间估计( ●)
7 单侧置信区间( ●)
小结
习题
第八章 假设检验 (▲)
1 假设检验
2 正态总体均值的假设检验
3 正态总体方差的假设检验
4 置信区间与假设检验之间的关系
5 样本容量的选取
6 分布拟合检验
7 秩和检验
8 假设检验问题的户值检验法
小结
习题
第九章 方差分析及回归分析(▲)
1 单因素试验的方差分析
2 双因素试验的方差分析
3 一元线性回归
4 多元线性回归
小结
附录
习题
第十章 bootstrap方法(▲)
1 非参数bootstrap方法
2 参数bootstrsp方法
小结
第十一章 在数理统计中应用Excel软件(▲)
1 概述
2 箱线图
3 假设检验
4 方差分析
5 一元线性回归
6 bootstrap方法、宏、VBA
本章参考文献
第十二章 随机过程及其统计描述(▲)
1 随机过程的概念
2 随机过程的统计描述
3 泊松过程及维纳过程
小结
习题
第十三章 马尔可夫链(▲)
1 马尔可夫过程及其概率分布
2 多步转移概率的确定
3 遍历性
小结
习题
第十四章 平稳随机过程(▲)
1 平稳随机过程的概念
2 各态历经性
3 相关函数的性质
4 平稳随机过程的功率谱密度
小结
习题
选做习题
参读材料 随机变量样本值的产生
附表
附表1 几种常用的概率分布表
附表2 标准正态分布表
附表3 泊松分布表
附表4 t分布表
附表5 X2分布表
附表6 F分布表
附表7 均值的t检验的样本容量
附表8 均值差的t检验的样本容量
附表9 秩和临界值表
习题答案
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论