对数函数的性质
    对数函数是幂函数的反函数,具有以下性质:
对数函数图像及性质1. 一次函数性:对数函数是一次函数,包括可以用它的切线求倾斜度和利用它的单调性来求函数的最大值或最小值。
2. 增函数性:对数函数x>0时在实数轴上单调递增,但任意的实数n值的对数函数在实数轴上都是凸函数。
3. 平移和缩放性:对数函数的图形不受平移影响,向左平移a,其图像也向左平移a个单位;如果沿x轴缩放k倍,其图像也同时沿x轴缩放k倍。
4. 放缩性:对数函数可以沿y轴放缩,当改变函数中的常数参数时,其函数图形直接受到放缩的影响,如果把常数参数a改变为ka,那么其函数图形会沿y轴放大k倍。
5. 对称性:对数函数具有狭义的对称性,即射线y=x与y轴上的点(0,a)是函数表达式x=loga(y)的镜像。
6. 连续性:对数函数是连续函数,即其在域上是连续的,可以在实数轴上画出来。
7. 相似性:对数函数图形存在相似性,当变量a不变时,不论变量b取何值,该函数的形状都不变,只有比例变化而已。

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。