一、反比例函数真题与模拟题分类汇编(难题易错题)
1.如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y= (k>0,x>0)的图象上,点D的坐标为(,2).
(1)求k的值;
(2)若将菱形ABCD沿x轴正方向平移,当菱形的一个顶点恰好落在函数y= (k>0,x >0)的图象上时,求菱形ABCD平移的距离.
【答案】(1)解:作DE⊥BO,DF⊥x轴于点F,
∵点D的坐标为(,2),
∴DO=AD=3,
∴A点坐标为:(,5),
∴k=5 ;
(2)解:∵将菱形ABCD向右平移,使点D落在反比例函数y= (x>0)的图象上D′,∴DF=D′F′=2,
∴D′点的纵坐标为2,设点D′(x,2)
∴2= ,解得x= ,
∴FF′=OF′﹣OF= ﹣ = ,
∴菱形ABCD平移的距离为,
同理,将菱形ABCD向右平移,使点B落在反比例函数y= (x>0)的图象上,
菱形ABCD平移的距离为,
综上,当菱形ABCD平移的距离为或时,菱形的一个顶点恰好落在函数图象上.【解析】【分析】(1)根据菱形的性质和D的坐标即可求出A的坐标,代入求出即可;(2)B和D可能落在反比例函数的图象上,根据平移求出即可.
2.已知反比例函数y= 的图象经过点A(﹣,1).
(1)试确定此反比例函数的解析式;
(2)点O是坐标原点,将线段OA绕O点顺时针旋转30°得到线段OB.判断点B是否在此反比例函数的图象上,并说明理由;
(3)已知点P(m, m+6)也在此反比例函数的图象上(其中m<0),过P点作x轴
的垂线,交x轴于点M.若线段PM上存在一点Q,使得△OQM的面积是,设Q点的纵坐标为n,求n2﹣2  n+9的值.
【答案】(1)解:由题意得1= ,解得k=﹣,
∴反比例函数的解析式为y=﹣
(2)解:过点A作x轴的垂线交x轴于点C.
在Rt△AOC中,OC= ,AC=1,
∴OA=  =2,∠AOC=30°,
∵将线段OA绕O点顺时针旋转30°得到线段OB,
∴∠AOB=30°,OB=OA=2,
∴∠BOC=60°.
过点B作x轴的垂线交x轴于点D.
在Rt△BOD中,BD=OB•sin∠BOD= ,OD=  OB=1,
∴B点坐标为(﹣1,),
将x=﹣1代入y=﹣中,得y= ,
∴点B(﹣1,)在反比例函数y=﹣的图象上
(3)解:由y=﹣得xy=﹣,
∵点P(m, m+6)在反比例函数y=﹣的图象上,其中m<0,
∴m( m+6)=﹣,
∴m2+2  m+1=0,
∵PQ⊥x轴,∴Q点的坐标为(m,n).反三角函数的所有公式
∵△OQM的面积是,
∴OM•QM= ,
∵m<0,∴mn=﹣1,
∴m2n2+2  mn2+n2=0,
∴n2﹣2  n=﹣1,
∴n2﹣2  n+9=8.
【解析】【分析】(1)由于反比例函数y= 的图象经过点A(﹣,1),运用待定系数法即可求出此反比例函数的解析式;(2)首先由点A的坐标,可求出OA的长度,∠AOC的大小,然后根据旋转的性质得出∠AOB=30°,OB=OA,再求出点B的坐标,进而判断点B是否在此反比例函数的图象上;(3)把点P(m, m+6)代入反比例函数的解析式,得到关于m的一元二次方程;根据题意,可得Q点的坐标为(m,n),再由
△OQM的面积是,根据三角形的面积公式及m<0,得出mn的值,最后将所求的代数式变形,把mn的值代入,即可求出n2﹣2  n+9的值.
3.如图,在平面直角坐标系中,一次函数y1=ax+b(a≠0)的图象与y轴相交于点A,与反
比例函数y2= (c≠0)的图象相交于点B(3,2)、C(﹣1,n).
(1)求一次函数和反比例函数的解析式;
(2)根据图象,直接写出y1>y2时x的取值范围;
(3)在y轴上是否存在点P,使△PAB为直角三角形?如果存在,请求点P的坐标;若不存在,请说明理由.
【答案】(1)解:把B(3,2)代入得:k=6
∴反比例函数解析式为:
把C(﹣1,n)代入,得:
n=﹣6
∴C(﹣1,﹣6)
把B(3,2)、C(﹣1,﹣6)分别代入y1=ax+b,得:,解得:
所以一次函数解析式为y1=2x﹣4
(2)解:由图可知,当写出y1>y2时x的取值范围是﹣1<x<0或者x>3.
(3)解:y轴上存在点P,使△PAB为直角三角形
如图,
过B作BP1⊥y轴于P1,
∠B P1 A=0,△P1AB为直角三角形
此时,P1(0,2)
过B作BP2⊥AB交y轴于P2
∠P2BA=90,△P2AB为直角三角形
在Rt△P1AB中,
在Rt△P1 AB和Rt△P2 AB
∴P2(0,)
综上所述,P1(0,2)、P2(0,).
【解析】【分析】(1)利用待定系数法求出反比例函数解析式,进而求出点C坐标,最后用再用待定系数法求出一次函数解析式;(2)利用图象直接得出结论;(3)分三种情况,利用勾股定理或锐角三角函数的定义建立方程求解即可得出结论.
4.已知:O是坐标原点,P(m,n)(m>0)是函数y= (k>0)上的点,过点P作直线PA⊥OP于P,直线PA与x轴的正半轴交于点A(a,0)(a>m).设△OPA的面积为
s,且s=1+ .
(1)当n=1时,求点A的坐标;
(2)若OP=AP,求k的值;
(3)设n是小于20的整数,且k≠ ,求OP2的最小值.
【答案】(1)解:过点P作PQ⊥x轴于Q,则PQ=n,OQ=m,

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。