眼睛的进化史:视觉系统的演化之旅——视觉器官、光感受器及视觉分子
在所有的感觉信息中,视觉机制可能是最复杂的了。我们每个人都能轻而易举地欣赏大自然的美景——青翠的草木、飞舞的蝴蝶、苍茫的白雪……我们很轻松地欣赏着大自然的彩斑斓与瞬息万状,但这种神奇的视觉过程到底从何而来?
其实,在动物界,视觉系统亦经历了从简单到复杂的演化过程。对光敏感的结构称为光感受器(photoreceptor),它在单细胞动物中可能只是探测周围环境的明暗,而在多细胞动物中则逐渐复杂化——出现了杯状或囊状光感受器,演化出晶状体,可使光线聚焦,并形成清晰的图像(image)。人们认为,这些图像被转化成一系列电信号,再经视神经传递到视觉皮质和其它脑区。据说,96%的动物具有这种复杂的视觉系统(a complex optical system)(Land and Fernald 1992)。 
一、视觉器官的演化
1. 原生动物的眼点
眼点(eyespot)是自然界中最简单的“眼睛”(Kreimer 2009),是存在于鞭毛虫、能运动的
绿藻细胞或其它像眼虫这样的单细胞光合生物中的一种光感受器官(photoreceptive organelle)。眼点由光感受器和亮的橙红素颗粒区域所组成(图1),这种光感受器是一种受蓝光激活的腺苷酸环化酶(a blue-light-activated adenylyl cyclase)(Iseki et al. 2002),该受体蛋白的激发导致作为第二信使的环腺苷酸(cAMP)的形成,化学信号传导最终触发鞭毛拍打模式和细胞运动的改变。简单地说,眼点使带鞭毛的原生动物能感受光的方向和密度,进行定向的趋光运动或避光运动,对这些小生命来说,这样的功能足以满足其生存需求了。据说,涡鞭毛虫可通过眼点对光的感受来进行捕食。
 
图1 扁眼虫,红为眼点(来源:百度图片) 
2. 刺胞动物的感觉棒
bacterium
水母是一种无脊椎动物,归属于刺胞动物门。水母眼睛中也有晶状体和视网膜,其视网膜由素构成,但只是一种简单的板状结构,当然,这足以为它们提供光线强弱和方向的信息。令人惊讶的是,在视网膜上捕捉光线的感光细胞中,将光信号转变成神经电信号的蛋白质以及向这种蛋白质传递信号的环状核苷是水母和人类都拥有的物质。因此,可以推测,人类的视觉系统有可能是从这种没有大脑、相对原始的动物祖先进化而来。
生活在热带海洋中的一种称为Tripedalia cystophora的箱水母,其伞帽顶部边缘的两侧各有4个感觉棒(rhopalium),它们与4对触手交替排列,晶状体向内,指向伞帽的中央(图2)。每个感觉棒是四种不同形态眼的集:一对凹眼(pit ocelli)、一对线眼(slit ocelli)、以及两个不成对的透镜眼(unpaired lens eyes),习惯上称为大复眼(large complex eye)和小复眼(small complex eye),也可称之为下透镜眼(lower lens eye)和上透镜眼(upper lens eye),上眼向上看,下眼水平看。这些眼由角膜、蜂窝状透镜和纤毛光感受体视网膜所构成。
图2 一种箱水母(Tripedalia cystophora)及其视觉器官——感觉棒。A:水母个体(比例尺=1cm);B:单个感觉棒;C一个分离出来的感觉棒(比例尺=200 μm)(引自Coates et al. 2006)
这种水母有如脊椎动物一样复杂的光学系统(图3),但还没进化出用于信息处理的中央大
脑。而且它们的视网膜在焦点之外,表明清楚的图像可能不是用来看清东西的,而是作为处理视觉信息的一种方式(Nilsson et al. 2005)。
水母眼睛的构造虽然和脊椎动物眼睛的构造类似,但水母眼睛的晶状体(lens)不能有效收集外界光线。随着动物的进化,逐渐演化出杯状或囊状光感受器并形成可使光线聚焦的晶状体。
 
图3 箱水母(Tripedalia cystophora)眼的精确解剖模型。矢状面显示有平衡石和两个透镜眼的内部结构。球形的晶状体被蜂窝状囊膜所包裹,其内部在晶状体和视网膜之间形成了类似于玻璃体的结构,大眼的虹膜收缩是由晶状体囊的外面部分收缩引起的。下眼是回转对称的,但上眼仅两侧对称(正面图如右图所示)。光感受器外节填满了两个透镜眼的视网膜,光感受器外节的排列奇特,特别是在上眼中,在那里,受体轴(receptor axes)在透镜一侧的一个点上汇聚(引自Nilsson et al. 2005)

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。