我们把这个问题划分成8个阶段,依次将8个棋子放到第一行、第二行、第三行……第八行。在放置的过程中,我们不停地检查当前的方法,是否满足要求。如果满足,则跳到下一行继续放置棋子;如果不满足,那就再换一种方法,继续尝试。
回溯算法非常适合用递归代码实现,所以,我把八皇后的算法翻译成代码。我在代码里添加了详细的
注释,你可以对比着看下。如果你之前没有接触过八皇后问题,建议你自己用熟悉的编程语言实现一遍,这对你理解回溯思想非常有帮助。
int[] result = new int[8];//全局或成员变量,下标表示行,值表示queen存储在哪一列
public void cal8queens(int row) { // 调用方式:cal8queens(0);
if (row == 8) { // 8个棋子都放置好了,打印结果
printQueens(result);
return; // 8行棋子都放好了,已经没法再往下递归了,所以就return
}
for (int column = 0; column < 8; ++column) { // 每一行都有8中放法
if (isOk(row, column)) { // 有些放法不满足要求
result[row] = column; // 第row行的棋子放到了column列
cal8queens(row+1); // 考察下一行
}
}
}
private boolean isOk(int row, int column) {//判断row行column列放置是否合适
int leftup = column - 1, rightup = column + 1;
for (int i = row-1; i >= 0; --i) { // 逐行往上考察每一行
if (result[i] == column) return false; // 第i行的column列有棋子吗?
if (leftup >= 0) { // 考察左上对角线:第i行leftup列有棋子吗?
if (result[i] == leftup) return false;
}
if (rightup < 8) { // 考察右上对角线:第i行rightup列有棋子吗?
if (result[i] == rightup) return false;
}
--leftup; ++rightup;
}
return true;
}
private void printQueens(int[] result) { // 打印出一个二维矩阵
for (int row = 0; row < 8; ++row) {
for (int column = 0; column < 8; ++column) {
if (result[row] == column) System.out.print("Q ");
else System.out.print("* ");
}
System.out.println();
}
System.out.println();
}
两个回溯算法的经典应用
回溯算法的理论知识很容易弄懂。不过,对于新手来说,比较难的是用递归来实现。所以,我们再通过两个例子,来练习一下回溯算法的应用和实现。
1.0-1背包
0-1背包是非常经典的算法问题,很多场景都可以抽象成这个问题模型。这个问题的经典解法是动态规划,不过还有一种简单但没有那么高效的解法,那就是今天讲的回溯算法。动态规划的解法我下一节再讲,我们先来看下,如何用回溯法解决这个问题。
有个叫什么代码的电影
0-1背包问题有很多变体,我这里介绍一种比较基础的。我们有一个背包,背包总的承载重量是Wkg。现在我们有n个物品,每个物品的重量不等,并且不可分割。我们现在期望选择几件物品,装载到背包中。在不超过背包所能装载重量的前提下,如何让背包中物品的总重量最大?
实际上,背包问题我们在贪心算法那一节,已经讲过一个了,不过那里讲的物品是可以分割的,我可以装某个物品的一部分到背包里面。今天讲的这个背包问题,物品是不可分割的,要么装要么不装,所以叫0-1背包问题。显然,这个问题已经无法通过贪心算法来解决了。我们现在来看看,用回溯算法如何来解决。对于每个物品来说,都有两种选择,装进背包或者不装进背包。对于n个物品来说,总的装法就有2^n种,去掉总重量超过Wkg的,从剩下的装法中选择总重量最接近Wkg的。不过,我们如何才能不重复地穷举出这2^n种装法呢?
这里就可以用回溯的方法。我们可以把物品依次排列,整个问题就分解为了n个阶段,每个阶段对应一个物品怎么选择。先对第一个物品进行处理,选择装进去或者不装进去,然后再递归地处理剩下的物品。描述起来很费劲,我们直接看代码,反而会更加清晰一些。
这里还稍微用到了一点搜索剪枝的技巧,就是当发现已经选择的物品的重量超过Wkg之后,我们就停止继续探测剩下的物品。你可以看我写的具体的代码。
public int maxW = Integer.MIN_VALUE; //存储背包中物品总重量的最大值
// cw表示当前已经装进去的物品的重量和;i表示考察到哪个物品了;
// w背包重量;items表示每个物品的重量;n表示物品个数
// 假设背包可承受重量100,物品个数10,物品重量存储在数组a中,那可以这样调用函数:
// f(0, 0, a, 10, 100)
public void f(int i, int cw, int[] items, int n, int w) {
if (cw == w || i == n) { // cw==w表示装满了;i==n表示已经考察完所有的物品
if (cw > maxW) maxW = cw;
return;
}
f(i+1, cw, items, n, w);
if (cw + items[i] <= w) {// 已经超过可以背包承受的重量的时候,就不要再装了
f(i+1,cw + items[i], items, n, w);
}
}
2.正则表达式
看懂了0-1背包问题,我们再来看另外一个例子,正则表达式匹配。
对于一个开发工程师来说,正则表达式你应该不陌生吧?在平时的开发中,或多或少都应该用过。实际上,正则表达式里最重要的一种算法思想就是回溯。
正则表达式中,最重要的就是通配符,通配符结合在一起,可以表达非常丰富的语义。为了方便讲解,我假设正表达式中只包含“*”和“?”这两种通配符,并且对这两个通配符的语义稍微做些改变,其中,“*”匹配任意多个(大于等于0个)任意字符,“?”匹配零个或者一个任意字符。基于以上背景假设,我们看下,如何用回溯算法,判断一个给定的文本,能否跟给定的正则表达式匹配?
我们依次考察正则表达式中的每个字符,当是非通配符时,我们就直接跟文本的字符进行匹配,如果相同,则继续往下处理;如果不同,则回溯。
如果遇到特殊字符的时候,我们就有多种处理方式了,也就是所谓的岔路口,比如“*”有多种匹配方案,可以匹配任意个文本串中的字符,我们就先随意的选择一种匹配方案,然后继续考察剩下的字符。如果中途发现无法继续匹配下去了,我们就回到这个岔路口,重新选择一种匹配方案,然后再继续匹配剩下的字符。
有了前面的基础,是不是这个问题就好懂多了呢?我把这个过程翻译成了代码,你可以结合着一块看下,应该有助于你理解。
public class Pattern {
private boolean matched = false;
private char[] pattern; // 正则表达式
private int plen; // 正则表达式长度
public Pattern(char[] pattern, int plen) {
this.pattern = pattern;
this.plen = plen;
}
public boolean match(char[] text, int tlen) { // 文本串及长度
matched = false;
rmatch(0, 0, text, tlen);
return matched;
}
private void rmatch(int ti, int pj, char[] text, int tlen) {
if (matched) return; // 如果已经匹配了,就不要继续递归了
if (pj == plen) { // 正则表达式到结尾了
if (ti == tlen) matched = true; // 文本串也到结尾了
return;
}
if (pattern[pj] == '*') { // *匹配任意个字符
for (int k = 0; k <= tlen-ti; ++k) {
rmatch(ti+k, pj+1, text, tlen);
}
} else if (pattern[pj] == '?') { // ?匹配0个或者1个字符
rmatch(ti, pj+1, text, tlen);
rmatch(ti+1, pj+1, text, tlen);
} else if (ti < tlen && pattern[pj] == text[ti]) { // 纯字符匹配才行
rmatch(ti+1, pj+1, text, tlen);
}
}
}
内容小结
回溯算法的思想非常简单,大部分情况下,都是用来解决广义的搜索问题,也就是,从一组可能的解中,选择出一个满足要求的解。回溯算法非常适合用递归来实现,在实现的过程中,剪枝操作是提高回溯效率的一种技巧。利用剪枝,我们并不需要穷举搜索所有的情况,从而提高搜索效率。
尽管回溯算法的原理非常简单,但是却可以解决很多问题,比如我们开头提到的深度优先搜索、八皇后、0-1背包问题、图的着、旅行商问题、数独、全排列、正则表达式匹配等等。如果感兴趣的话,你可以自己搜索研究一下,最好还能用代码实现一下。如果这几个问题都能实现的话,你基本就掌握了回溯算法。
课后思考
现在我们对今天讲到的0-1背包问题稍加改造,如果每个物品不仅重量不同,价值也不同。如何在不超过背包重量的情况下,让背包中的总价值最大?
欢迎留言和我分享,也欢迎点击“请朋友读”,把今天的内容分享给你的好友,和他一起讨论、学习。

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。