log ln lg的互换公式log-log公式
log函数运算公式是y=logax(a>0&a≠1)。
对数公式是数学中的一种常见公式,如果a^x=N(a>0,且a≠1),则x叫作以a为底N的对数,记做x=log(a)(N),其中a要写于log右下。其中a叫作对数的底,N叫作真数。通常我们将以10为底的对数叫作常用对数,以e为底的对数称为自然对数。
如果a(a大于0,且a不等于1)的b次幂等于N,那么数b叫作以a为底N的对数,记作log aN=b,读作以a为底N的对数,其中a叫作对数的底数,N叫作真数.一般地,函数y=log(a)X,(其中a是常数,a>0且a不等于1)叫作对数函数 它实际上就是指数函数的反函数。
正如除法是乘法的倒数反之亦然, 这意味着一个数字的对数是必须产生另一个固定数字(基数)的指数,在简单的情况下乘数中的对数计数因子,更一般来说乘幂允许将任何正实数提高到任何实际功率,总是产生正的结果因此可以对于b不等于1的任何两个正实数b和x计算对数。
补充
1、对数公式是数学中的一种常见公式。
2、如果a(a大于0,且a不等于1)的b次幂等于N。
3、log中文意思就是对数,在数学中对数是对求幂的逆运算。
换底公式
logMN=logaM/logaN
换底公式导出
logMN=-logNM
推导公式
log(1/a)(1/b)=log(a^-1)(b^-1)=-1logab/-1=loga(b)
loga(b)*logb(a)=1
loge(x)=ln(x)
lg(x)=log10(x)
log表示对数函数。一般地,函数y=log(a)X,(其中a是常数,a>0且a不等于1)叫做对数函数,它实际上就是指数函数的反函数,可表示为x=a^y。因此指数函数里对于a的规定,同样适用于对数函数。
对数函数的常用简略表达方式
(1)log(a)(b^n)=nlog(a)(b)(a为底数)(n属于R)
(2)lg(b)=log(10)(b)(10为底数)
(3)ln(b)=log(e)(b)(e为底数)
对数函数的运算性质
一般地,如果a(a>0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数,记作log(a)(N)=b,其中a叫做对数的底数,N叫做真数。对数函数化简问题,底数则要>0且≠1真数>0

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。