一:前言
在键盘驱动代码分析的笔记中,接触到了input子系统.键盘驱动,键盘驱动将检测到的所有按键都上报给了input子系统。 Input子系统是所有I/O设备驱动的中间层,为上层提供了一个统一的界面。例如,在终端系统中,我们不需要去管有多少个键盘,多少个鼠标。它只要从 input子系统中去取对应的事件(按键,鼠标移位等)就可以了。今天就对input子系统做一个详尽的分析.
下面的代码是基于linux kernel 2.6.25.分析的代码主要位于kernel2.6.25/drivers/input下面.
二:使用input子系统的例子
在内核自带的文档Documentation/中。有一个使用input子系统的例子,并附带相应的说明。以此为例分析如下:
#include
#include
#include

#include
#include

static void button_interrupt(int irq, void *dummy, struct pt_regs *fp)
{
input_report_key(&button_dev, BTN_1, inb(BUTTON_PORT) & 1);
input_sync(&button_dev);
}

static int __init button_init(void)
{
  if (request_irq(BUTTON_IRQ, button_interrupt, 0, "button", NULL)) {
    printk(KERN_ERR "button.c: Can''t allocate irq %d\n", button_irq);
    return -EBUSY;
  }

button_dev.evbit[0] = BIT(EV_KEY);
button_dev.keybit[LONG(BTN_0)] = BIT(BTN_0);

input_register_device(&button_dev);
}

static void __exit button_exit(void)
{
input_unregister_device(&button_dev);
free_irq(BUTTON_IRQ, button_interrupt);
}

module_init(button_init);
module_exit(button_exit);

这个示例module代码还是比较简单,在初始化函数里注册了一个中断处理例程。然后注册了一个input device.在中断处理程序里,将接收到的按键上报给input子系统。
文 档的作者在之后的分析里又对这个module作了优化。主要是在注册中断处理的时序上。在修改过后的代码里,为input device定义了open函数,在open的时候再去注册中断处理例程。具体的信息请自行参考这篇文档。在资料缺乏的情况下,kernel自带的文档就 是剖析kernel相关知识的最好资料.
文档的作者还分析了几个api函数。列举如下:

1):set_bit(EV_KEY, button_dev.evbit);
set_bit(BTN_0, button_dev.keybit);
分别用来设置设备所产生的事件以及上报的按键值。Struct iput_dev中有两个成员,一个是evbit.一个是keybit.分别用表示设备所支持的动作和按键类型。
2): input_register_device(&button_dev);
用来注册一个input device.
3): input_report_key()
用于给上层上报一个按键动作
4): input_sync()
用来告诉上层,本次的事件已经完成了.
5): NBITS(x) - returns the length of a bitfield array in longs for x bits
LONG(x) - returns the index in the array in longs for bit x
BIT(x) - returns the index in a long for bit x
这几个宏在input子系统中经常用到。上面的英文解释已经很清楚了。

三:input设备注册分析.
Input设备注册的接口为:input_register_device()。代码如下:
int input_register_device(struct input_dev *dev)
{
static atomic_t input_no = ATOMIC_INIT(0);
struct input_handler *handler;
const char *path;
int error;

__set_bit(EV_SYN, dev->evbit);



init_timer(&dev->timer);
if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
dev->timer.data = (long) dev;
dev->timer.function = input_repeat_key;
dev->rep[REP_DELAY] = 250;
dev->rep[REP_PERIOD] = 33;
}
在 前面的分析中曾分析过。Input_device的evbit表示该设备所支持的事件。在这里将其EV_SYN置位,即所有设备都支持这个事件.如果 dev->rep[REP_DELAY]和dev->rep[REP
_PERIOD]没有设值,则将其赋默认值。这主要是处理重复按键的.

if (!dev->getkeycode)
dev->getkeycode = input_default_getkeycode;

if (!dev->setkeycode)
dev->setkeycode = input_default_setkeycode;

snprintf(dev->dev.bus_id, sizeof(dev->dev.bus_id),
"input%ld", (unsigned long) atomic_inc_return(&input_no) - 1);

error = device_add(&dev->dev);
if (error)
return error;

path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
printk(KERN_INFO "input: %s as %s\n",
dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
kfree(path);

error = mutex_lock_interruptible(&input_mutex);
if (error) {
device_del(&dev->dev);
return error;
}
如 果input device没有定义getkeycode和setkeycode.则将其赋默认值。还记得在键盘驱动中的分析吗?这两个操作函数就可以用来取键的扫描码 和设置键的扫描码。然后调用device_add()将input_dev中封装的device注册到sysfs

list_add_tail(&dev->node, &input_dev_list);


list_for_each_entry(handler, &input_handler_list, node)
input_attach_handler(dev, handler);

input_wakeup_procfs_readers();

mutex_unlock(&input_mutex);

return 0;
}
这 里就是重点了。将input device 挂到input_dev_list链表上.然后,对每一个挂在input_handler_list的handler调用 input_attach_handler().在这里的情况有好比设备模型中的device和driver的匹配。所有的input device都挂在input_dev_list链上。所有的handle都挂在input_handler_list上。
看一下这个匹配的详细过程。匹配是在input_attach_handler()中完成的。代码如下:
static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
{
const struct input_device_id *id;
int error;

if (handler->blacklist && input_match_device(handler->blacklist, dev))
return -ENODEV;

id = input_match_device(handler->id_table, dev);
if (!id)
return -ENODEV;

error = handler->connect(handler, dev, id);
if (error && error != -ENODEV)
printk(KERN_ERR
"input: failed to attach handler %s to device %s, "
"error: %d\n",
handler->name, kobject_name(&dev->dev.kobj), error);

return error;
}
handleblacklist被赋值。要先匹配blacklist中的数据跟dev->id的数据是否匹配。匹配成功过后再来匹配 handle->iddev->id中的数据。如果匹配成功,则调用handler->connect().
来看一下具体的数据匹配过程,这是在input_match_device()中完成的。代码如下:
static const struct input_device_id *input_match_device(const struct input_device_id *id,
struct input_dev *dev)
{
int i;

for (; id->flags || id->driver_info; id++) {

if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
if (id->bustype != dev->id.bustype)
continue;

if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
if (id->vendor != dev->id.vendor)
continue;

if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
if (id->product != dev->id.product)
continue;

if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
if (id->version != dev->id.version)
continue;

MATCH_BIT(evbit, EV_MAX);
MATCH_BIT(,, KEY_MAX);
MATCH_BIT(relbit, REL_MAX);
MATCH_BIT(absbit, ABS_MAX);
MATCH_BIT(mscbit, MSC_MAX);
MATCH_BIT(ledbit, LED_MAX);
MATCH_BIT(sndbit, SND_MAX);
MATCH_BIT(ffbit, FF_MAX);
MATCH_BIT(swbit, SW_MAX);

return id;
}


return NULL;
}
MATCH_BIT宏的定义如下:
#define MATCH_BIT(bit, max)
for (i = 0; i < BITS_TO_LONGS(max); i++)
if ((id->bit[i] & dev->bit[i]) != id->bit[i])
break;
if (i != BITS_TO_LONGS(max))
continue;

此看到。在id->flags中定义了要匹配的项。定义INPUT_DEVICE_ID_MATCH_BUS。则是要比较input deviceinput handler的总线类型。 INPUT_DEVICE_ID_MATCH_VENDORINPUT_DEVICE_ID_MATCH_PRODUCTINPUT_DEVICE_ID_MATCH_VERSION 分别要求设备厂商。设备号和设备版本.
如果id->flags定义的类型匹配成功。或者是id->flags没有定义,就会进入到 MATCH_BIT的匹配项了.MATCH_BIT宏的定义可以看出。只有当iput deviceinput handlerid成员在evbit, keybit,… swbit项相同才会匹配成功。而且匹配的顺序是从evbit, keybitswbit.只要有一项不同,就会循环到id中的下一项进行比较.
简而言之,注册input device的过程就是为input device设置默认值,并将其挂以input_dev_list.与挂载在input_handler_list中的handler相匹配。如果匹配成功,就会调用handlerconnect函数.

:handler注册分析
Handler注册的接口如下所示:
int input_register_handler(struct input_handler *handler)
{
struct input_dev *dev;
int retval;

retval = mutex_lock_interruptible(&input_mutex);
if (retval)
return retval;

INIT_LIST_HEAD(&handler->h_list);

if (handler->fops != NULL) {
if (input_table[handler->minor >> 5]) {
retval = -EBUSY;
goto out;
}
input_table[handler->minor >> 5] = handler;
}

list_add_tail(&handler->node, &input_handler_list);


list_for_each_entry(dev, &input_dev_list, node)
input_attach_handler(dev, handler);

input_wakeup_procfs_readers();

out:
mutex_unlock(&input_mutex);
return retval;
}
handler->minor表示对应input设备节点的次设备号.handler->minor右移五位做为索引值插入到input_table[ ]..之后再来分析input_talbe[ ]的作用.
然后将handler挂到input_handler_list.然后将其与挂在input_dev_list中的input device匹配.这个过程和input device的注册有相似的地方.都是注册到各自的链表,.然后与另外一条链表的对象相匹配.
:handle的注册
int input_register_handle(struct input_handle *handle)
{
struct input_handler *handler = handle->handler;
struct input_dev *dev = handle->dev;
int error;

/*
* We take dev->mutex here to prevent race with
* input_release_device().
*/
error = mutex_lock_interruptible(&dev->mutex);
if (error)
return error;
list_add_tail_rcu(&handle->d_node, &dev->h_list);
mutex_unlock(&dev->mutex);
synchronize_rcu();



list_add_tail(&handle->h_node, &handler->h_list);

if (handler->start)
handler->start(handle);

return 0;
}
在这个函数里所做的处理其实很简单.handle挂到所对应input deviceh_list链表上.还将handle挂到对应的handlerhlist链表上.如果handler定义了start函数,将调用之.
到这里,我们已经看到了input device, handlerhandle是怎么关联起来的了.以图的方式总结如下:



:event事件的处理
我们在开篇的时候曾以linux kernel文档中自带的代码作分析.提出了几个事件上报的API.这些API其实都是input_event()的封装.代码如下:
void input_event(struct input_dev *dev,
unsigned int type, unsigned int code, int value)
{
unsigned long flags;

//判断设备是否支持这类事件
if (is_event_supported(type, dev->evbit, EV_MAX)) {

spin_lock_irqsave(&dev->event_lock, flags);
//利用键盘输入来调整随机数产生器
add_input_randomness(type, code, value);
input_handle_event(dev, type, code, value);
spin_unlock_irqrestore(&dev->event_lock, flags);
}
}
首先,先判断设备产生的这个事件是否合法.如果合法,流程转入到input_handle_event().
代码如下:
static void input_handle_event(struct input_dev *dev,
unsigned int type, unsigned int code, int value)
{
int disposition = INPUT_IGNORE_EVENT;

switch (type) {

case EV_SYN:
switch (code) {
case SYN_CONFIG:
disposition = INPUT_PASS_TO_ALL;
break;

case SYN_REPORT:
if (!dev->sync) {
dev->sync = 1;
disposition = INPUT_PASS_TO_HANDLERS;
}
break;
}
break;

case EV_KEY:
//判断按键值是否被支持
if (is_event_supported(code, dev->keybit, KEY_MAX) &&
!!test_bit(code, dev->key) != value) {

if (value != 2) {
__change_bit(code, dev->key);
if (value)
input_start_autorepeat(dev, code);
}

disposition = INPUT_PASS_TO_HANDLERS;
}
break;

case EV_SW:
if (is_event_supported(code, dev->swbit, SW_MAX) &&
!!test_bit(code, dev->sw) != value) {

__change_bit(code, dev->sw);
disposition = INPUT_PASS_TO_HANDLERS;
}
break;
case EV_ABS:
if (is_event_supported(code, dev->absbit, ABS_MAX)) {

value = input_defuzz_abs_event(value,
dev->abs[code], dev->absfuzz[code]);

if (dev->abs[code] != value) {
dev->abs[code] = value;
disposition = INPUT_PASS_TO_HANDLERS;
}
}
break;

case EV_REL:
if (is_event_supported(code, dev->relbit, REL_MAX) && value)
disposition = INPUT_PASS_TO_HANDLERS;


break;

case EV_MSC:
if (is_event_supported(code, dev->mscbit, MSC_MAX))
disposition = INPUT_PASS_TO_ALL;

break;

case EV_LED:
if (is_event_supported(code, dev->ledbit, LED_MAX) &&
!!test_bit(code, dev->led) != value) {

__change_bit(code, dev->led);
disposition = INPUT_PASS_TO_ALL;
}
break;

case EV_SND:
if (is_event_supported(code, dev->sndbit, SND_MAX)) {

if (!!test_bit(code, dev->snd) != !!value)
__change_bit(code, dev->snd);
disposition = INPUT_PASS_TO_ALL;
}
break;

case EV_REP:
if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
dev->rep[code] = value;
disposition = INPUT_PASS_TO_ALL;
}
break;

case EV_FF:
if (value >= 0)
disposition = INPUT_PASS_TO_ALL;
break;

case EV_PWR:
disposition = INPUT_PASS_TO_ALL;
break;
}

if (type != EV_SYN)
dev->sync = 0;

if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
dev->event(dev, type, code, value);

if (disposition & INPUT_PASS_TO_HANDLERS)
input_pass_event (dev, type, code, value);
}
这里,我们忽略掉具体事件的处理.到最后,如果该事件需要input device来完成的,就会将disposition设置成INPUT_PASS_TO_DEVICE.如果需要handler来完成的,就将 dispostion设为INPUT_PASS_TO_HANDLERS.如果需要两者都参与,disposition设置为 INPUT_PASS_TO_ALL.
需要输入设备参与的,回调设备的event函数.如果需要handler参与的.调用input_pass_event().代码如下:
static void input_pass_event(struct input_dev *dev,
unsigned int type, unsigned int code, int value)
{
struct input_handle *handle;

rcu_read_lock();

handle = rcu_dereference(dev->grab);
if (handle)
handle->handler->event(handle, type, code, value);
else
list_for_each_entry_rcu(handle, &dev->h_list, d_node)
if (handle->open)
handle->handler->event(handle,type, code, value);
rcu_read_unlock();
}
如果input device被强制指定了handler,则调用该handlerevent函数.
结合handle注册的分析.我们知道.会将handle挂到input deviceh_list链表上.
果没有为input device强制指定handler.就会遍历input device->h_list上的handle成员.如果该handle被打开,则调用与输入设备对应的handlerevent()函数. ,只有在handle被打开的情况下才会接收到事件.
另外,输入设备的handler强制设置一般是用带EVIOCGRAB标志的ioctl来完成的.如下是发图的方示总结evnet的处理过程:




我们已经分析了input device,handlerhandle的注册过程以及事件的上报和处理.下面以evdev为实例做分析.来贯穿理解一下整个过程.
:evdev概述
Evdev对应的设备节点一般位于/dev/input/event0 ~ /dev/input/event4.理论上可以对应32个设备节点.分别代表被handler匹配的32input device.
可以用cat /dev/input/event0.然后移动鼠标或者键盘按键就会有数据输出(两者之间只能选一.因为一个设备文件只能关能一个输入设备).还可以往这个文件里写数据,使其产生特定的事件.这个过程我们之后再详细分析.
为了分析这一过程,必须从input子系统的初始化说起.

:input子系统的初始化
Input子系统的初始化函数为input_init().代码如下:
static int __init input_init(void)
{
int err;

err = class_register(&input_class);
if (err) {
printk(KERN_ERR "input: unable to register input_dev class\n");
return err;
}

err = input_proc_init();
if (err)
goto fail1;

err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
if (err) {
printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
goto fail2;
}

return 0;


fail2: input_proc_exit();
fail1: class_unregister(&input_class);
return err;
}
在这个初始化函数里,先注册了一个名为”input”的类.所有input device都属于这个类.sysfs中表现就是.所有input device所代表的目录都位于/dev/class/input下面.
然后调用input_proc_init()/proc下面建立相关的交互文件.
再后调用register_chrdev()注册了主设备号为INPUT_MAJOR(13).次设备号为0~255的字符设备.它的操作指针为input_fops.
在这里,我们看到.所有主设备号13的字符设备的操作最终都会转入到input_fops.在前面分析的/dev/input/event0~/dev/input/event4的主设备号为13.操作也不例外的落在了input_fops.
Input_fops定义如下:
static const struct file_operations input_fops = {
.
owner = THIS_MODULE,
.open = input_open_file,
};
打开文件所对应的操作函数为input_open_file.代码如下示:
static int input_open_file(struct inode *inode, struct file *file)
{
struct input_handler *handler = input_table[iminor(inode) >> 5];
const struct file_operations *old_fops, *new_fops = NULL;
int err;


if (!handler || !(new_fops = fops_get(handler->fops)))
return -ENODEV;

iminor(inode) 为打开文件所对应的次设备号.input_table是一个struct input_handler全局数
.在这里.它先设备结点的次设备号右移5位做为索引值到input_table中取对应项.从这里我们也可以看到. handle代表1<<5个设备节点(因为在input_table中取值是以次备号右移5位为索引的.即低5位相同的次备号对应的是同一 个索引).在这里,终于看到了input_talbe大显身手的地方了.input_talbe[ ]中取值和input_talbe[ ]的赋值,这两个过程是相对应的.

input_table中到对应的handler之后,就会检验这个handle是否存,是否带有fops文件操作集.如果没有.则返回一个设备不存在的错误.

if (!new_fops->open) {
fops_put(new_fops);
return -ENODEV;
}
old_fops = file->f_op;
file->f_op = new_fops;

err = new_fops->open(inode, file);

if (err) {
fops_put(file->f_op);
file->f_op = fops_get(old_fops);
}
fops_put(old_fops);
return err;
}
然后将handler中的fops替换掉当前的fops.如果新的fops中有linux系统免费下载open()函数,则调用它.

:evdev的初始化
Evdev的模块初始化函数为evdev_init().代码如下:
static int __init evdev_init(void)
{
return input_register_handler(&evdev_handler);
}
它调用了input_register_handler注册了一个handler.
注意到,在这里evdev_handler中定义的minorEVDEV_MINOR_BASE(64).也就是说evdev_handler所表示的设备文件范围为(13,64)à(13,64+32).
从之前的分析我们知道.匹配成功的关键在于handler中的blacklistid_talbe. Evdev_handlerid_table定义如下:
static const struct input_device_id evdev_ids[] = {
{ .driver_info = 1 },
{ },
};
它没有定义flags.也没有定义匹配属性值.这个handler是匹配所有input device.从前面的分析我们知道.匹配成功之后会调用handler->connect函数.
Evdev_handler,该成员函数如下所示:

static int evdev_connect(struct input_handler *handler, struct input_dev *dev,
const struct input_device_id *id)
{
struct evdev *evdev;
int minor;
int error;

for (minor = 0; minor < EVDEV_MINORS; minor++)
if (!evdev_table[minor])
break;

if (minor == EVDEV_MINORS) {
printk(KERN_ERR "evdev: no more free evdev devices\n");
return -ENFILE;
}
EVDEV_MINORS定义为32.表示evdev_handler所表示的32个设备文件.evdev_talbe是一个struct evdev类型的数组.struct evdev是模块使用的封装结构.在接下来的代码中我们可以看到这个结构的使用.
这一段代码的在evdev_talbe到为空的那一项.minor就是数组中第一项为空的序号.

evdev = kzalloc(sizeof(struct evdev), GFP_KERNEL);
if (!evdev)
return -ENOMEM;

INIT_LIST_HEAD(&evdev->client_list);
spin_lock_init(&evdev->client_lock);

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。