Docker最近很火。Docker实现了“集装箱”——一种介于“软件包”和“虚拟机”之间的概念——并被寄予厚望,以期革新Internet服务以及其他大数据处理系统的开发、测试、和部署流程。
为了使用Docker,需要了解不少工具及其设计思路;而这些工具的文档分布在不同的网站。为了方便大家学习,本文以开发一个极简的搜索引擎为例,展示Docker带来的革新。
说是革新,其实是Google已经用了十年的方式,只是最近才因为Docker开源项目而广为人知。Eric Brewer(Google VP of Infrastructure)在Dockercon14活动上的演讲回顾了这段历程。目前,Google每周会执行20亿个集装箱。可以说,最近十年是各互联网公司和高校都在奋力模仿Google的计算技术的十年。了解这一模仿的过程,可以帮助我们深入理解分布式系统(包括现在常说的“大数据系统”)中若干重要问题。为此,本文以技术教程为主线,穿插了一些关于Hadoop和Mesos等“模仿”项目的介绍,简要追溯它们勇敢而艰难的“邯郸学步”的历程。最后,本文会介绍Google最近公布的“正确答案”——Kubernetes——Google核心技术Borg的开源版本。
Docker
Docker是一个软件系统,实现了一种称为“集装箱”的概念。集装箱类似Google机管理系统Borg中的包(package)。
通常我们说的“包”是软件包——比如Ubuntu/Debian Linux里常见的.deb文件——安装的时候,安装程序会把被依赖的包也装上。可是执行的时候呢?得根据具体情况配置,然后依次启动互相依赖的多个程序。比如,启动一个Web服务之前,要启动Apache和MySQL;而且他们仨都得有合理的配置,确保它们能一起工作,来实现这个Web服务。
但是Docker集装箱以及Borg中的包更像虚拟机。虚拟机里包括程序和配置,所以可以被执行——也就是执行其中的程序。因为程序是配置好的,所以虚拟机可以被扔到各种环境上去执行——包括开发机、做演示用的笔记本电脑、用VirtualBox虚拟的机、测试机、预发布环境和产品环境。近几年随着“云计算”概念的普及,虚拟机被广泛使用,作为分布式计算的基础调度单元。
Docker作为一个软件系统,可以用来创建“集装箱镜像”(container image)和执行这些镜像。就像VirtualBox是一个软件系统,可以用来创建和执行虚拟机。但是集装箱比虚拟机“轻”——一个虚拟机包括一组虚拟硬件、操作系统,用来执行用户程序;而集装箱里没有虚拟的硬件,也没有操作系统,它用主机(host)的硬件和操作系统来执行程序。
那么在集装箱里跑程序和直接在主机上跑有什么区别呢?一个区别是,集装箱有一套网络端口
空间(port space)。一个集装箱里的进程可以各自开端口,也可以连接对方的端口进行通信。但是这些端口是集装箱之外的进程看不到的。我们也可以让集装箱把某些内部端口号展示给外部,比如把集
装箱内的端口5000映射到外部的8080。这样,当我们用主机上的程序(比如浏览器)访问本机(主机)的8080端口时,实际上访问的是集装箱里的5000端口。这项对外公开集装箱内部端口的技术,称为端口转发(port forwarding),和虚拟机的端口转发概念一样。另一个区别在于,集装箱里有虚拟的文件系统。这样我们可以把要执行的程序拷贝进集装箱。也可以把主机上的某些目录映射成集装箱虚拟文件系统的某些目录。
集装箱这个想法已经在深刻地改变传统分布式系统的开发、测试和部署的流程了。传统的做法是,开发者写一个Makefile(或者其他描述,比如CMakeList、POM等)来说明如何把源码编译成二进制文件。随后,开发人员会在开发机上配置并且执行二进制文件,来作测试。测试人员会在测试机上配置和执行,来作验证。而运维人员会在数据中心里的预发布环境和产品环境上配置和执行,这就是部署。因为开发机、测试机、和产品环境里机器的数量和质量都不同,所以配置往往很不同。加上每个新版本的软件系统,配置方式难免有所差异,所以经常造成意外错误。以至于绝大部分团队都选择趁夜深人静、用户不活跃的时候,上线新版本,苦不堪言。
而利用集装箱概念的开发流程里,开发者除了写Makefile,还要写一个Dockerfile,来描述如何把二进制文件安装进一个集装箱镜像(container image),并且做好配置。而一个镜像就像一台配置好的虚拟机,可以在机上启动多个实例(instance),而每个实例通常称为一个集装箱(container)。在自测的时候,开发者在开发机上执行一个或者多个集装箱;在验证时,测试人员在测试机上执行集
装箱;在部署时,运维人员在产品环境执行集装箱。因为执行的都是同样地集装箱,所以不容易出错。
python虚拟机这种流程更合理的划分了开发者和其他角的工作边界,也大大简化了测试和部署工作。
boot2docker
上节提到,Docker虚拟了网络地址空间和文件系统。实际上,它还虚拟了进程ID空间(pid space)等系统数据结构。这些功能是一个叫dockerd的daemon程序借助Linux内核中的control groups(又叫cgroups)功能实现的。
dockerd负责执行集装箱;就像VirtualBox负责执行虚拟机一样。而cgroup是Google的两个工程师Paul Menage和Rohit Seth贡献给Linux社区的。cgroups的使用始于2006年。但是从他们的工作记录看,主要工作持续到2008和2009年。据说,Google开发它就是为了方便在自己的机上部署各种Internet应用和离线处理系统。具体一点儿的故事,请看这篇Information Week上的帖子。。
因为cgroups功能只有Linux内核有,所以Docker目前只能运行在Linux上。可是,现在很多开发者都在用Mac。为了能让这些开发者方便的测试自己创作的集装箱镜像,Docker的开发者写了boot2docker——利用VirtualBox虚拟一个Linux主机,并且在上面安装dockerd。而命令行控制程序docker执行在Mac主机上,被配置成和虚拟Linux主机上的dockerd协作。
boot2docker的安装方式很简单:照着这个流程,下载并执行一个安装包即可。因为
boot2docker利用了VirtualBox,所以安装它之前需要先装VirtualBox。Homebrew也提供了安oot2docker的选项,但是可能因为bug导致dockerd和docker版本不同,没法协同工作。
在利用boot2docker在Mac上开始工作之前,还有几个注意事项。当我们在Linux主机上启动一个集装箱的时候,我们可以让Docker把主机的某些目录映射成集装箱内的目录。这样集装箱里的程序和主机上的程序共享数据,是一种方便的调试方式。但是在用boot2docker的时候,“主机”不是Mac,而是虚拟Linux主机。此时如果想把Mac上的目录映射到集装箱,先得将其通过VirtualBox映射到Linux主机。
另一个注意事项和端口转发有关。当我们把集装箱内的某个端口映射为主机的某个端口时,只是映射到了虚拟Linux主机;如果想让Mac上的程序能访问,还得把虚拟机端口通过VirtualBox 映射成Mac上的端口。这些注意事项,在下文中会有详细解释。
CoreOS
实际开发中的测试机和产品环境通常都是用的Linux服务器。要在上面执行集装箱,也需要安装Docker。因为Docker的开发者提供各种Linux软件包,所以通常输入一个命令,即可安装Docker。比如在Ubuntu/Debian Linux里,这个命令是:
sudo apt‐get install docker.io
但是目前最常用的用来执行Docker集装箱的Linux发行版本既不是Ubuntu、Debian也不是RedHat、Fedora,而是CoreOS。这个发行版本根本没有软件包管理程序,所以也不能通过输入某个命令来安装软件。但是CoreOS预装了Docker,所以可以制作集装箱镜像,或者下载别人发布的集装箱镜像来执行。目前,Amazon AWS和Google Compute Engine这两大云计算平台都提供预装了CoreOS的虚拟机。
实际上,Google数据中心里运行的Linux系统和CoreOS有很多相似之处。我记得2010年我刚离开Google加入腾讯的时候,一位腾讯的同事好奇地问:“Google的机里用的Linux用什么软件包管理程序?是aptget吗?还是yum?”我回答:“其实服务器上运行的Linux是不需要包管理的,只有桌面Linux系统才需要”。这位同事很难相信。其实,要不是因为“见了一回猪跑”,我也想不到会是这样。
CoreOS和其他Linux发行版本相比,执行效率高、内存耗费省;此外,利用双磁盘分区技术,即便是更新Linux内核也不需要重启。CoreOS还有很多独特之处,使得它在问世后很短的时间里就被Amazon和Google采用。如果想进一步了解这些特性,请看这个对Docker作者的访谈。
Go语言
接下来,我们看看如何在Mac上用Go语言写一个极简化的搜索引擎,并且封装成集装箱镜像。
我们选择Go语言为例,而不是更常见的Java、Python、Perl、Ruby、Scala等,有很现实的原因——后面这些语言写的程序,在执行时都需要某些运行环境的支持。比如,Java程序依赖Java虚拟机,Python程序需要Python解释器,这些加上预装的程序库需要占用几百MB的集装箱空间。而用Go写的程序默认是全静态编译的,执行时不需要任何环境支持,不需要预装库,甚至连Linux系统动态库都不依赖。鉴于一家公司的系统往往由成千上万的集装箱构成;每个集装箱少几百MB,能为公司省出很大一笔开销。那些每月要向Amazon或者Goolgle付账的公司,对此必然印象深刻。这是Go语言在很多创业公司拓展迅猛的一个原因。
如果我们用C或者C++开发,也可以生成全静态链接的二进制程序文件。但是在Web时代,
C/C++的开发效率不如Go。Google里倒是普遍使用C++,但是Google里有一套精心设计、积攒多年的C++库,这是外界没有的。外界普遍得使用第三方库,并往往因此挠头。比如,不同的第三方库(Thrift和boost)各有各的线程池机制,很难统一管理多线程。C++11倒是有了标准线程管理,但是把很多库统一到C++11是一项开销极大的工作。Go语言是专门为分布式系统开发设计的,根本就没有线程的概念,在语法上用goroutine代替了,线程池实现在Go runtime里,被编译进每个二进制程序。
交叉编译
因为集装箱用主机的操作系统和硬件来执行程序,而Docker只支持Linux,所以Go程序必须被编译成Li
nux二进制文件,才能通过Docker运行。而我们在Mac上开发,需要利用交叉编译技术来生成Linux二进制文件。
为了得到一个支持交叉编译的Go语言编译器,我们需要从源码安装Go,并且需要做一些额外的安装工作。具体过程如下:
1. 安装Xcode,从而获得C编译器。
2. 下载Go编译器的源码包。比如Go 1.3在这里。
3. 解压和编译
tar xzvf go1.3.
cd go/src
./all.bash
4. 编译各种平台下的Go标准库
git clone git://github/davecheney/golang‐crosscompile.git
source golang‐crosscompile/crosscompile.bash
go‐crosscompile‐build‐all
这里,我们用到了Dave Cheney写的一个Bash脚本程序。这个程序支持生成以下平台上的Go语言标准库:
1. darwin/386
2. darwin/amd64
3. freebsd/386
4. freebsd/amd64
5. freebsd/arm
6. linux/386
7. linux/amd64
8. linux/arm
9. windows/386
10. windows/amd64
11. nacl/amd64
12. nacl/386
并行计算最常用的目标平台是linux/amd64——64bit的Linux系统,也是CoreOS的平台格式。下文中我们会演示如何在Mac下用这个编译器生成Linux平台的二进制代码文件。
极简版搜索引擎
在这篇帖子里,作者Adriaan de Jonge用一个最简单的http server作为例子,说明如何在
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论