informer模型代码
Informer模型是一种用于时序预测任务的深度学习模型,可以用于预测多个时间步长的未来值。它采用自注意力机制来建模输入序列的长期依赖关系,并结合了一些新的技术来增强其性能。
Informer模型代码可以使用Python编写,并使用TensorFlow或PyTorch等深度学习框架实现。下面是一个使用PyTorch实现Informer模型的代码示例:
```
import torch
as nn
functional as F
class Encoder(nn.Module):
def __init__(self, input_size, d_model, n_heads, e_layers, d_ff, dropout):
decoder super().__init__()
self.input_size = input_size
self.d_model = d_model
self.n_heads = n_heads
self.e_layers = e_layers
self.d_ff = d_ff
self.dropout = dropout
bed = nn.Linear(input_size, d_model)
self.layers = nn.ModuleList([EncoderLayer(d_model, n_heads, d_ff, dropout) for _ in range(e_layers)])
= nn.LayerNorm(d_model)
def forward(self, x):
x = bed(x)
for i in range(self.e_layers):
x = self.layers[i](x)
(x)
class EncoderLayer(nn.Module):
def __init__(self, d_model, n_heads, d_ff, dropout):
super().__init__()
self.attn = MultiHeadAttention(d_model, n_heads, dropout)
1 = nn.LayerNorm(d_model)
self.mlp = PositionwiseFeedForward(d_model, d_ff, dropout)
2 = nn.LayerNorm(d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
x = x + self.dropout(self.attn(x))
x = 1(x)
x = x + self.dropout(self.mlp(x))
x = 2(x)
return x
class MultiHeadAttention(nn.Module):
def __init__(self, d_model, n_heads, dropout):
super().__init__()
self.d_model = d_model
self.n_heads = n_heads
self.head_size = d_model // n_heads
self.query = nn.Linear(d_model, d_model)
self.key = nn.Linear(d_model, d_model)
self.value = nn.Linear(d_model, d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
batch_size, seq_len, _ = x.size()
q = self.query(x).view(batch_size, seq_len, self.n_heads, self.head_size).transpose(1, 2)
k = self.key(x).view(batch_size, seq_len, self.n_heads, self.head_size).transpose(1, 2)
v = self.value(x).view(batch_size, seq_len, self.n_heads, self.head_size).transpose(1, 2)
attn_scores = torch.matmul(q, k.transpose(-2, -1)) / self.head_size ** 0.5
attn_probs = F.softmax(attn_scores, dim=-1)
attn_probs = self.dropout(attn_probs)
x = torch.matmul(attn_probs, v)
x = x.transpose(1, 2).contiguous().view(batch_size, seq_len, self.d_model)
return x
class PositionwiseFeedForward(nn.Module):
def __init__(self, d_model, d_ff, dropout):
super().__init__()
self.fc1 = nn.Linear(d_model, d_ff)
self.fc2 = nn.Linear(d_ff, d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
x = self.lu(self.fc1(x)))
x = self.fc2(x)
return x
class Informer(nn.Module):
def __init__(self, input_size, output_size, enc_in, dec_in, c_out, factor, d_model, n_heads, e_layers, d_ff, dropout):
super().__init__()
self.input_size = input_size
self.output_size = output_size
_in = enc_in
self.dec_in = dec_in
self.c_out = c_out
self.factor = factor
self.d_model = d_model
self.n_heads = n_heads
self.e_layers = e_layers
self.d_ff = d_ff
self.dropout = dropout
der = Encoder(input_size, d_model, n_heads, e_layers, d_ff, dropout)
_linear = nn.Linear(d_model, c_out)
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论