python三维随机游⾛轨迹模拟_Python模拟随机游⾛图形效果
⽰例
本⽂实例讲述了Python模拟随机游⾛图形效果。分享给⼤家供⼤家参考,具体如下:
在python中,可以利⽤数组操作来模拟随机游⾛。
下⾯是⼀个单⼀的200步随机游⾛的例⼦,从0开始,步长为1和-1,且以相等的概率出现。纯Python⽅式实现,使⽤了内建的 random 模块:
# 随机游⾛
import matplotlib.pyplot as plt
import random
position = 0
walk = [position]
steps = 200
for i in range(steps):
step = 1 if random.randint(0, 1) else -1
position += step
walk.append(position)
fig = plt.figure()
plt.title("www.jb51")
ax = fig.add_subplot(111)
ax.plot(walk)
plt.show()
第⼆种⽅式:简单的把随机步长累积起来并且可以可以使⽤⼀个数组表达式来计算。因此,我⽤ np.random 模块去200次硬币翻转,设置它们为1和-1,并计算累计和:
# 随机游⾛
import matplotlib.pyplot as plt
import numpy as np
nsteps = 200
draws = np.random.randint(0, 2, size=nsteps)
steps = np.where(draws > 0, 1, -1)
walk = steps.cumsum()
fig = plt.figure()
plt.title("www.jb51")
ax = fig.add_subplot(111)
ax.plot(walk)
plt.show()
⼀次模拟多个随机游⾛
# 随机游⾛
import matplotlib.pyplot as plt
import numpy as np
nwalks = 5
nsteps = 200
draws = np.random.randint(0, 2, size=(nwalks, nsteps)) # 0 or 1
random pythonsteps = np.where(draws > 0, 1, -1)
walks = steps.cumsum(1)
fig = plt.figure()
plt.title("www.jb51")
ax = fig.add_subplot(111)
for i in range(nwalks):
ax.plot(walks[i])
plt.show()
当然,还可以⼤胆的试验其它的分布的步长,⽽不是相等⼤⼩的硬币翻转。你只需要使⽤⼀个不同的随机数⽣成函数,如 normal 来产⽣相同均值和标准偏差的正态分布:
steps = al(loc=0, scale=0.25, size=(nwalks, nsteps))
希望本⽂所述对⼤家Python程序设计有所帮助。
如您对本⽂有疑问或者有任何想说的,请点击进⾏留⾔回复,万千⽹友为您解惑!
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论