pythonnumpy随机数组,pythonnumpy常⽤随机数的产⽣⽅法
的实现
numpy 中 的random模块有多个函数⽤于⽣成不同类型的随机数,常见的有 uniform、rand、random、randint、random_interges 下⾯介绍⼀下各⾃的⽤法
1、np.random.uniform的⽤法
np.random.uniform(low=0.0, high=1.0, size=None)
作⽤:可以⽣成[low,high)中的随机数,可以是单个值,也可以是⼀维数组,也可以是多维数组
参数介绍:
low :float型,或者是数组类型的,默认为0
high:float型,或者是数组类型的,默认为1
size:int型,或元组,默认为空
In[1]: import numpy as np
In[2]: np.random.uniform() # 默认为0到1
Out[2]: 0.827455693512018
In[3]: np.random.uniform(1,5)
Out[3]: 2.93533586182789
In[4]: np.random.uniform(1,5,4) #⽣成⼀维数组
Out[4]: array([ 3.18487512, 1.40233721, 3.17543152, 4.06933042])
In[5]: np.random.uniform(1,5,(4,3)) #⽣成4x3的数组
Out[5]:
array([[ 2.33083328, 1.592934 , 2.38072 ],
[ 1.07485686, 4.93224857, 1.42584919],
[ 3.2667912 , 4.57868281, 1.53218578],
[ 4.17965117, 3.63912616, 2.83516143]])
In[6]: np.random.uniform([1,5],[5,10])
Out[6]: array([ 2.74315143, 9.4701426 ])
2、np.random.random_sample的⽤法
和np.random.random作⽤⼀样
random_sample(size=None)
- 作⽤:返回[0,1)之间的浮点型随机数,通过size控制返回的形状
np.random.random_sample()
0.47108547995356098
type(np.random.random_sample())
np.random.random_sample((5,))
array([ 0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428])
Three-by-two array of random numbers from [-5, 0):
5 * np.random.random_sample((3, 2)) - 5
array([[-3.99149989, -0.52338984],
[-2.99091858, -0.79479508],
[-1.23204345, -1.75224494]])
3、np.random.rand的⽤法
rand(d0, d1, …, dn)
作⽤:返回[0,1)内的浮点数,输⼊的d0,d1…dn代表维度信息,没有输⼊时,则返回[0,1)内的⼀个随机值In[15]: np.random.rand()
Out[15]: 0.9027797355532956
In[16]:np.random.rand(3,3)
Out[16]:
array([[ 0.47507608, 0.64225621, 0.9926529 ],
[ 0.95028412, 0.18413813, 0.91879723],
[ 0.89995217, 0.42356103, 0.81312942]])
In[17]: np.random.rand(3,3,3)
Out[17]:
array([[[ 0.30295904, 0.76346848, 0.33125168],
[ 0.77845927, 0.75020602, 0.84670385],
[ 0.2329741 , 0.65962263, 0.93239286]],
[[ 0.24575304, 0.9019242 , 0.62390674],
[ 0.43663215, 0.93187574, 0.75302239],
[ 0.62658734, 0.01582182, 0.66478944]],
[[ 0.22152418, 0.51664503, 0.41196781],
[ 0.47723318, 0.19248885, 0.29699868],
[ 0.11664651, 0.66718804, 0.39836448]]])
4、np.random.randint的⽤法
randint(low, high=None, size=None, dtype='l')
作⽤:⽣成整型随机数,可以是单个随机数,也可以是多维的随机数构成的数组
参数介绍random python
low:int 型,随机数的下限
high:int 型,默认为空,随机数的上限,当此值为空时,函数⽣成[0,low)区间内的随机数
size:int、或ints、或元组,指明⽣成的随机数的类型
dtype:可选'int' ,'int32',默认为'l'
In[7]: np.random.randint(4)
Out[7]: 1
In[8]: np.random.randint(4,size=4)
Out[8]: array([2, 2, 2, 0])
In[9]: np.random.randint(4,10,size=6)
Out[9]: array([7, 9, 7, 8, 6, 9])
np.random.randint(4,10,size=(2,2),dtype='int32')
Out[10]:
array([[7, 4],
[6, 9]])
5、np.random.random_integers的⽤法
random_integers(low, high=None, size=None)
和randint的⽤法较为相似,区别在于[low,high]
的右边界能够取到,且改函数即将被抛弃,可以使⽤
np.random.randint(low,high+1)进⾏代替
总结:随机数可以分为两⼤类,⼀类是浮点型的,常以np.random.uniform为代表,np.random.rand,np.random.radnom和np.random.random_simple可以看作是np.random.uniform的特例;另⼀类是整数型的,以np.random.randint为代表,也有np.random.random_integers 但是后者将被前者取代
以上就是本⽂的全部内容,希望对⼤家的学习有所帮助,也希望⼤家多多⽀持⾕⾕点程序。
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论