如何解读链式中介作⽤分析结果?
中介作⽤是研究⾃变量X对因变量Y的影响时,是否会先通过中介变量M,再去影响Y。⽐如⼯作满意度(X)会影响到创新氛围(M),再影响最终⼯作绩效(Y)。
在中介作⽤研究中,如果⾃变量与因变量之间存在多个中介变量被称为多重中介模型。
⼀、基本类型
根据中介变量之间是否有影响关系⼜可分为两种类型。
并⾏中介模型:并⾏多重中介模型,中介变量之间互不影响
链式中介模型:链式多重中介模型,中介变量之间相互影响
⽬前⽐较常见的是Bootstrap法进⾏中介效应检验。
⼆、多重中介操作⽅法
(1)并⾏中介基于SPSSAU的操作:
①登录SPSSAU上传数据;
②在SPSSAU左侧仪表盘选择[问卷研究]--[中介作⽤];
③拖拽相应的变量到对应分析框;中介变量可同时放⼊多个;
④[中介类型]选择“平⾏中介”,点击开始分析。
SPSSAU中介作⽤分析
结果分析
上表是对中介作⽤分析结果的基本汇总。本次研究以X作为⾃变量,M1、M2作为中介变量,Y为因变量进⾏分析。本次中介效应分析共涉及共4个模型,模型⽅程分别如下:
Y=2.835+0.408*X
M1=2.093+0.541*X
M2=1.152+0.776*X
Y=1.611+0.038*X+0.524*M1+0.110*M2
上表是以Bootstrap法进⾏中介检验,分别对应两条路径结果:X->M1->Y 和 X->M2->Y;
如果置信区间不包括0,那么中介作⽤显著,⽀持有中介作⽤的假设; 如果包括0,则不显著,不⽀持有中介作⽤的假设。
分别对两条路径分别进⾏中介效应检验。⾸先看X->M1->Y这条路径,bootstrap 95%置信区间为0.337~0.498,不包括0,说明X对Y影响时M1的中介效应显著。中介效应为0.284。
接着看X->M2->Y这条路径,bootstrap 95%置信区间为0.033~0.221,检验结果不包括0,说明X对Y影响时M2的中介效应显著。中介效应为0.085。
上表为中介作⽤效应量结果汇总表格。如果中介效应显著,可在此表中进⼀步查看中介作⽤的效应占⽐。
(2)链式中介基于SPSSAU的操作:
①登录SPSSAU上传数据;
②在SPSSAU左侧仪表盘选择[问卷研究]--[中介作⽤];
bootstrap检验方法
③拖拽相应的变量到对应分析框;中介变量可同时放⼊多个;
④[中介类型]选择“链式中介”(默认为并⾏中介);
⑤点击开始分析。
结果分析
个模型。
上表为中介效应分过程汇总表格,输出包括中介效应、间接效应和总效应等结果。
如果置信区间不包括0,那么中介作⽤显著,⽀持有中介作⽤的假设; 如果包括0,则不显著,不⽀持中
介作⽤的假设。
其中,总效应bootstrap95%置信区间为0.331~0.484,检验结果不包括0,说明总效应显著。直接效应95%置信区间为-0.055~0.132,检验结果包括0,说明直接效应不显著。
间接效应需要结合两条或多条路径回归模型的结果值相乘得到,⽐如中介变量M时,X->M和M->Y的效应值相乘,即得到间接效应值,间接效应值进⾏Bootstrap抽样检验,最终验证是否存在中介效应。间接效应结果可通过下⾯的间接效应分析表格进⾏查看。
使⽤Bootstrap抽样检验法进⾏中介效应研究,抽样次数为5000次,结果显⽰:
针对链式中介效应路径进⾏分析,针对‘X⇒M1⇒M2⇒Y’这条中介路径来看, 95%区间并不包括数字0(95% CI:0.003~0.021),因⽽说明此条中介效应路径存在。

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。