课题:一次函数及正比例函数图像与性质 | 适用范围: 初二数学 | |
学习目标 一次函数:一次函数图像与性质是中考必考的内容之一。中考试题中分值约为10分左右题型多样,形式灵活,综合应用性强。你,准备好了吗? | 学生姓名: | |
学生表现: | ||
教学设计 | ||
一、要点梳理 1、正比例函数 一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数. 2、正比例函数图象和性质 一般地,正比例函数y=kx(k为常数,k≠0)的图象是一条经过原点和(1,k)的一条直线,我们称它为直线y=kx.当k>0时,直线y=kx经过第一、三象限,从左向右上升,即随着x的增大,y也增大;当k<0时,直线y=kx经过第二、四象限,从左向右下降,即随着x的增大y反而减小. 3、正比例函数解析式的确定 确定一个正比例函数,就是要确定正比例函数定义式y=kx(k≠0)中的常数k,其基本步骤是:(1)设出含有待定系数的函数解析式y=kx(k≠0); (2)把已知条件(自变量与函数的对应值)代入解析式,得到关于系数k的一元一次方程; (3)解方程,求出待定系数k; (4)将求得的待定系数的值代回解析式. 4、一次函数 一般地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数. 5、一次函数的图象 (1)一次函数y=kx+b(k≠0)的图象是经过(0,b)和 两点的一条直线,因此一次函数y=kx+b的图象也称为直线y=kx+b. (2)一次函数y=kx+b的图象的画法. 根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b), .即横坐标或纵坐标为0的点. 6、正比例函数与一次函数图象之间的关系 一次函数y=kx+b的图象是一条直线,它可以看作是由直线y=kx平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移). 7、直线y=kx+b的图象和性质与k、b的关系如下表所示: k>0,b>0 经过第一、二、三象限 k>0,b<0 经过第一、三、四象限 k>0,b=0 经过第一、三象限 k>0时,图象从左到右上升,y随x的增大而增大 k<0,b>0 经过第一、二、四象限 k<0,b<0 经过第二、三、四象限 K<0,b=0 经过第二、四象限 k<0 图象从左到右下降,y随x的增大而减小 8、直线y1=kx+b与y2=kx图象的位置关系: (1)当b>0时,将y2=kx图象向x轴上方平移b个单位,就得到y1=kx+b的图象. (2)当b<0时,将y2=kx图象向x轴下方平移-b个单位,就得到了y1=kx+b的图象. 9、直线l1:y1=k1x+b1与l2:y2=k2x+b2的位置关系可由其解析式中的比例系数和常数来确定: 当k1≠k2时,l1与l2相交,交点是(0,b). 10、直线y=kx+b(k≠0)与坐标轴的交点. (1)直线y=kx与x轴、y轴的交点都是(0,0); (2)直线y=kx+b与x轴交点坐标为( -,0)与 y轴交点坐标为(0,b). 考 点: 主要考察内容:①会画一次函数的图像,并掌握其性质。②会根据已知条件,利用待定系数法确定一次函数的解析式。③能用一次函数解决实际问题。④考察一次函数与二元一次方程组,一元一次不等式的关系。 突破方法:①正确理解掌握一次函数的概念,图像和性质。②运用数学结合的思想解与一次函数图像有关的问题。③掌握用待定系数法球一次函数解析式。④做一些综合题的训练,提高分析问题的能力。 二、典例透析 1.(2010湖北省咸宁)如图,直线:与直线:相交于点 P(,2),则关于的不等式≥的解集为 . 2.(2010北京)如图,直线y=2x+3与x轴相交于点A,与y轴相交于点B. 求A,B两点的坐标; 过B点作直线BP与x轴相交于P,且使OP=2OA, 求ΔABP的面积. ◆【巩固练习】 1.(2010山东聊城)如图,过点Q(0,3.5)的一次函数与正比例函数y=2x的图象相交于点P,能表示这个一次函数图象的方程是( ) A.3x-2y+3.5=0 B.3x-2y-3.5=0 C.3x-2y+7=0 D.3x+2y-7=0 2.(2010重庆綦江县)一次函数y=-3x-2的图象不经过( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 3.(2010 黄冈)已知四条直线y=kx-3,y=-1,y=3和x=1所围成的四边形的面积是12,则k的值为( ) A.1或-2 B.2或-1 C.3 D.4 4.(2010 四川成都)若一次函数的函数值随的增大而减小,且图象与轴的负半轴相交,那么对和的符号判断正确的是( ) (A) (B) (C) (D) 5.(2010湖北武汉)如图,直线y=kx+b过点A(0《2),且与直线y=mx交于点P(1,m),则不等式组mx>kx+b>mx-2的解集是 . 6.(2010 四川巴中)直线y = 2x +6与两坐标轴围成的三角形面积是 7.(2010湖北荆州)函数,.当时, x的范围是( ) A..x<-1 B.-1<x<2 C.x<-1或x>2 D.x>2 8.(2010江苏常州)如图,一次函数的图像上有两点A、B,A点的横坐标为2,B点的横坐标为,过点A、B分别作的垂线,垂足为C、D,的面积分别为,则的大小关系是( ) 第9题 A. B. C. D. 无法确定 9.(2010 四川自贡)如图,点Q在直线y=-x上运动,点一次函数与正比例函数概念A的坐标为(1,0),当线段AQ最短时,点Q的坐标为__________________. 三、智能迁移 1.(2010四川乐山)已知一次函数y=kx+b,当0≤x≤2时,对应的函数值y的取值范围是-2≤y≤4,则kb的值为( ) A. 12 B. -6 C. -6或-12 D. 6或12 2.(2010 湖北孝感)若直线的交点在第四象限,则整数m的值为 ( ) A.—3,—2,—1,0 B.—2,—1,0,1 C.—1,0,1,2 D.0,1,2,3 3.(2010 广西玉林、防城港)对于函数y=kx(k是常数,k≠0)的图象,下列说法不正确的是( ) A.是一条直线 B.过点(,k) C.经过一、三象限或二、四象限 D.y随着x增大而增大 4.(2010年福建省泉州) 在一次函数中,随的增大而 (填“增大”或“减小”),当 时,y的最小值为 . 5.(2010四川广安)在平面直角坐标系中,将直线向下平移4个单位长度后。所得直线的解析式为 . 6.(2010浙江绍兴)在平面直角坐标系中,一次函数的图象与坐标轴围成的三角形, 叫做此一次函数的坐标三角形.例如,图中的一次函数的图象与 x,y轴分别交于点A,B,则△OAB为此函数的坐标三角形. (1)求函数y=x+3的坐标三角形的三条边长; (2)若函数y=x+b(b为常数)的坐标三角形周长为16, 求此三角形面积. 7.(2010江西)已知直线经过点(1,2)和点(3,0),求这条直线的解析式. 8.(2010广东肇庆)已知一次函数,当时, (1)求一次函数的解析式; (2)将该函数的图象向上平移6个单位,求平移后的图象与x轴交点的坐标. 9.(2010广东清远)正比例函数y=kx和一次函数y=ax+b的图象都经过点A(1,2),且一次函数的图象交x轴于点B(4,0).求正比例函数和一次函数的表达式. 四、课堂小结 五、课后练兵 1.(2010 福建莆田)A(、B(是一次函数y=kx+2(k>0)图像上的不同的两点,若t=则( ) A . B. C. D. 2.(2010贵州铜仁)已知正比例函数y=kx(k≠0)的函数值y随x的增大而减少,则一次函数y=kx+k的图象大致是( ) 1.(2010辽宁大连)如图6,直线1:与轴、轴分别相交于点、,△AOB与△ACB关于直线对称,则点C的坐标为 2.(2010 山东滨州)已知点是第一象限内的点,且,点A的坐标为(10,0) .设△OAP的面积为. (1)求与的函数关系式,并写出自变量的取值范围; (2)画出的图像. 3.(2010新疆乌鲁木齐)如图6,在平面直角坐标系中,直线分别交 x轴、y轴于点A、B,将△AOB绕点O顺时针旋转90°后 得到△A′OB′ (1)求直线A′B′的解析式; (2)若直线A′B′与直线l相交于点C,求△ABC的面积。 | ||
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论