python包怎么做双重差分did分析_多变量相关性分析(⼀个因
变量与多个⾃变量)
⽬录:
前⾔
偏相关或复相关
意义与⽤途
分析⽅法:
1、 样本相关系数矩阵、相关系数检验
2、 复相关分析
3、 决定系数
(RMSE的介绍)
⼩结
⼀、前⾔:
继上⼀篇⽂章,继续探讨相关性分析,这次不再是两个变量,⽽是3个或者以上的变量之间的相关关系分析。
没读过上篇⽂章请先仔细阅读再过来,因为多变量本质上是基于双变量的
TzeSing Kong:相关性分析(两变量)z huanlan.zhihu
⼆、偏相关或复相关
简单相关:研究两变量之间的关系
偏相关或复相关:研究三个或者以上变量与的关系
线性相关来解释:
在这⾥仍然是选择最简单的线性相关
三、意义与⽤途:
不需要区分⾃变量和因变量,这有些情况下,我们只想了解两个变量之间是否有线性相关关系
并不想拟合建⽴它们的回归模型,也不需要区分⾃变量和因变量只想了解两个变量之间是否有线性相关关系,并不想拟合建⽴它们的回归模型
时可⽤相关性分析。
四、分析⽅法:
1、样本相关阵
来⾃正态总体
容量为
的样本,其中每个样本
个观测
分别计算两两样本之间的简单相关系数
,它们构成的矩阵就是:
由于每个变量跟⾃⼰的相关系数就是
,即:
其中,
就是两个变量的简单相关系数。
例⼦:
> X <- read.table("clipboard", header = T)
> cor(X)  # 相关系数矩阵
y        x1        x2        x3        x4
y  1.0000000 0.9871498 0.9994718 0.9912053 0.6956619 x1 0.9871498 1.0000000 0.9907018 0.9867664 0.7818066 x2 0.9994718 0.9907018 1.0000000 0.9917094 0.7154297 x3 0.9912053 0.9867664 0.9917094 1.0000000 0.7073820 x4 0.6956619 0.7818066 0.7154297 0.7073820 1.0000000
矩阵散点图:
再看看矩阵散点图
> pairs(X, ...)  # 多元数据散点图
相关系数检验:
> install.package('psych')  # 先安装⼀个'psych'的包
> library(psych)
> st(X)
st(x = yX)
Correlation matrix
y  x1  x2  x3  x4
y  1.00 0.99 1.00 0.99 0.70
x1 0.99 1.00 0.99 0.99 0.78
x2 1.00 0.99 1.00 0.99 0.72
x3 0.99 0.99 0.99 1.00 0.71
x4 0.70 0.78 0.72 0.71 1.00
Sample Size
[1] 31
Probability values (Entries above the diagonal are adjusted for multiple tests.)
y x1 x2 x3 x4
y  0  0  0  0  0
x1 0  0  0  0  0
x2 0  0  0  0  0
x3 0  0  0  0  0
x4 0  0  0  0  0
To see confidence intervals of the correlations, print with the short=FALSE option
上⾯矩阵是相关系数的
值矩阵,下⾯矩阵是
值矩阵
可以看出
的关系都⼗分密切
相关系数
且置信度
2、复相关分析
实际分析中,⼀个变量(
)往往要受到多种变量(
)的综合影响,
所谓复相关,就是研究多个变量同时与某个变量的相关关系,
复相关系数
度量复相关程度的指标是复相关系数
多个变量同时与某个变量的相关关系不能直接测算,只能通过间接测算
复相关系数的计算:
设因变量
,⾃变量为
,构造⼀个线性模型为:对
作相关分析,就是对
简单相关分析
记:
复相关系数,
复相关系数
简单相关系数
python怎么读的的计算公式:
多元线性回归分析中,我们希望知道因变量与⼀组⾃变量之间的相关程度,即复相关,复相关系数反映了⼀个变量与
复相关系数反映了⼀个变量与复相关系数常⽤于多元线性回归分析
另⼀组变量的密切程度。
假设检验:
回归分析与⽅差分析的时候会继续详细说明
与多元回归的⽅差分析
⽅差分析⼀样,所以我留在下篇⽂章阐述回归分析与⽅差分析
综上:
⾄于
还有
是什么?
回归分析的时候会详细说明。
就由下篇⽂章阐述回归分析
TzeSing Kong:线性回归——描述变量间预测关系最简单的回归模型z huanlan.zhihu
3、决定系数

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。