1.已知点A(3,4),点B为直线x=—1上的动点,设B(-1,y).
(1)如图1,若点C(x,0)且-1<x<3,BC⊥AC,求y与x之间的函数关系式;
(2)在(1)的条件下,y是否有最大值?若有,请求出最大值;若没有,请说明理由;
(3)如图2,当点B的坐标为(-1,1)时,在x轴上另取两点E,F,且EF=1.线段EF在x轴上平移,线段EF平移至何处时,四边形ABEF的周长最小?求出此时点E的坐标.
2.如图,在平面直角坐标系中,点O为坐标原点,A点的坐标为(3,0),以OA为边作等边
三角形OAB,点B在第一象限,过点B作AB的垂线交x轴于点C.动点P从O点出发沿OC向C点运动,动点Q从B点出发沿BA向A点运动,P,Q两点同时出发,速度均为1个单位/秒。设运动时间为t秒.
(1)求线段BC的长;
(2)连接PQ交线段OB于点E,过点E作x轴的平行线交线段BC于点F。设线段EF的长为m,求m与t之间的函数关系式,并直接写出自变量t的取值范围:
(3)在(2)的条件下,将△BEF绕点B逆时针旋转得到△BE′F′,使点E的对应点E′落在线段AB上,点F的对应点是F′,E′F′交x轴于点G,连接PF、QG,当t为何值时,
3.一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车辆行驶的时间为x h,两车之间的距离为y km,图中的折线表示y与x之间的函数关系.根据图象解决以下问题:
(1)慢车的速度为    km/h,快车的速度为    km/h;
(2)解释图中点D的实际意义并求出点D的坐标;
(3)求快车出发多少时间时,两车之间的距离为300km?
4.一次函数y=kx+b的图像经过点(0,—4)且与正比例函数y=kx的图象交于点(2,-1).
(1)分别求出这两个函数的表达式;
(2)求这两个函数的图象与x轴围成的三角形的面积;       
(3)直接写出不等式kx-4≥kx的解集。
5.已知:如图1,△OAB是边长为2的等边三角形,OAx轴上,点B在第一象限内;△OCA是一个等腰三角形,OCAC,顶点C在第四象限,∠C=120°.现有两动点PQ分别从AO两点同时出发,点Q以每秒1个单位的速度沿OC向点C运动,点P以每秒3个单位的速度沿AOB运动,当其中一个点到达终点时,另一个点也随即停止.
(1)求在运动过程中形成的△OPQ面积S与运动时间t之间的函数关系,并写出自变量t的取值范围;
(2)在OA上(点OA除外)存在点D,使得△OCD为等腰三角形,请直接写出所有符合条件的点D的坐标;
(3)如图2,现有∠MCN=60°,其两边分别与OBAB交于点MN,连接MN.将∠MCN绕着C点旋转(0°<旋转角<60°),使得MN始终在边OB和边AB上.试判断在这一过程中,△BMN的周长是否发生变化?若没有变化,请求出其周长;若发生变化,请说明理由.
6.如图,直线y=x+m(m≠0)交x轴负半轴于点A、交y轴正半轴于点B且AB=5,过点A作直线AC⊥AB交y轴于点C.点E从坐标原点O出发,以0.8个单位/秒的速度沿y轴向上运动;与此同时直线l从与直线AC重合的位置出发,以1个单位/秒的速度沿射线AB方向平行移动.直线l在平移过程中交射线AB于点F、交y轴于点G.设点E离开坐标原点O的时间为t(t≥0)s.
(1)求直线AC的解析式;
(2)直线l在平移过程中,请直接写出△BOF为等腰三角形时点F的坐标;
(3)直线l在平移过程中,设点E到直线l的距离为d,求d与t的函数关系.
7.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为两车之间的距离,图中的折线表示之间的函数关系.
根据图象进行以下探究:
(1)请解释图中点B的实际意义;
(2)求慢车和快车的速度;
(3)求线段BC所表示的之间的函数关系式,并写出自变量的取值范围;
8.(7分)如图,一次函数y=-x+3的图象与x轴和y轴分别交于点A和B ,再将△AOB沿直线CD对折,使点A与点B重合。直线CD与x轴交于点C,与AB交于点D.
(1)点A的坐标为            ,点B的坐标为           
(2)求OC的长度;
(3)在x轴上有一点P,且△PAB是等腰三角形,不需计算过程,直接写出点P的坐标.
9.如图,已知一次函数的图象与轴和轴分别相交于A、B两点,点C在线段BA上以每秒1个单位长度的速度从点B向点A运动,同时点D在线段AO上以同样的速度从点A向点O运动,运动时间为,其中一点到达终点时,另一点也随之停止运动.
(1)求线段AB的长;
(2)当为何值时, ACD的面积等于AOB面积的
一次函数与正比例函数概念(3)当为何值时, ACD是等腰三角形。
10.如图,直线轴交于点(4,0),与轴交于点,长方形的边轴上,.长方形由点与点重合的位置开始,以每秒1个单位长度的速度沿轴正方向作匀速直线运动,当点与点重合时停止运动。设长方形运动的时间为秒,长方形重合部分的面积为.
(1)求直线的解析式;
(2)当=1时,请判断点是否在直线上,并说明理由;
(3)请求出当为何值时,点在直线上;
(4)直接写出在整个运动过程中的函数关系式。
11.在一条直线上依次有ABC三个港口,甲、乙两船同时分别从AB港口出发,沿直线匀速驶向C港,最终达到C港.设甲、乙两船行驶x(h)后,B港的距离分别为(km),x的函数关系如图所示.
(1)填空:AC两港口间的距离为    km,   
(2)求图中点P的坐标,并解释该点坐标所表示的实际意义
(3)甲、乙两船同在行驶途中,若两船距离不超过10 km时能够相互望见,求甲、乙两船可以相互望见时x的取值范围.
12.(1)证明:不论取什么值,直线:y=x—都通过一个定点;
(2)以A(0,2)、B(2,0)、O(0,0)为顶点的三角形被直线分成两部分,分别求出当=2和=-时,靠近原点O一侧的那部分面积.
13.小明在上物理实验课时,利用量筒和体积相同的小球进行了如下操作:
请根据示意图中所给信息,解答下列问题:
(1)放入一个小球后,量筒中水面升高      cm;
(2)求放入小球后,量筒中水面的高度 (cm)与小球个数(个)之间的函数关系式(不要求写出自变量的取值范围);
(3)若往量筒中继续放入小球,量筒中的水就会溢出.问:量筒中至少放入几个小球时有水溢出?
14.小颖和小亮上山游玩,小颖乘会缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50 min才乘上缆车,缆车的平均速度为180 m/min.设小亮出发x min后行走的路程为y m.图中的折线表示小亮在整个行走过程中y与x的函数关系.

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。