基础知识
一、位值原理
位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同。也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”。例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理。
位值原理的表达形式:以六位数为例:abcdef
a×100000+b×10000+c×1000+d×100+e ×10+f。
二、数的进制
我们常用的进制为十进制,特点是“逢十进一”。在实际生活中,除了十进制计数法外,还有其他的大于1的自然数进位制。比如二进制,八进制,十六进制等。
二进制:在计算机中,所采用的计数法是二进制,即“逢二进一”。因此,二进制中只用两个数字0和1。二进制的计数单位分别是1、21、22、23、……,二进制数也可以写做展开式的形式,例如100110在二进制中表示为:(100110)
2
=1×25+0×24+0×23+1×22+1×21+0×20。二进制的运算法则:“满二进一”、“借一当二”,乘法口诀是:零零得零,一零得零,零一得零,一一得一。
注意:对于任意自然数n,我们有n0=1。
n进制:n进制的运算法则是“逢n进一,借一当n”,n进制的四则混合运算和十进制一样,先乘除,后加减;同级运算,先左后右;有括号时先计算括号内的。
进制间的转换:如右图所示。
小升初第13讲
位值原理的应用(一)
技巧总结
1、用0,1,2,3,4,5,6,7,8,9这10个数字表示所有整数的方法叫做十进制,十进制是最常见
的进制,世界上绝大多数国家和地区都用这种计算方法来计数,它的特点是满十进一,退一当十。
除了十进制外,有其它一些进位制,如时间是60进制,即60秒是一分,60分是1小时,还有三进制,五进制,八进制,十六进制。它们和十进制计数方法的道理是一样的,现代计算机上大多数用二进制,即满二进一,退一当二,这种进位制只能两个数字0和1,如1在二进制中做1,2就要满二进一,记做10,3记做11,为了区别十进制和二进制,只要在这个数的右下角标上2或10即可。
任何一个二进制数也像十进制数一样,也可以写成各个数位上的数字与2的次方数的乘积的和的形式,如()0
123452212021202121110101⨯+⨯+⨯+⨯+⨯+⨯=2、二进制与十进制的相互转换
1、二进制转化成十进制:将二进制数按每个数位的位值展开后求和即可;
例如把二进制数()()10277101101转化成十进制数;
()()
10543210277212021212021101101=⨯+⨯+⨯+⨯+⨯+⨯=八进制和十六进制转换为十进制的方法,与二进制转化成十进制的方法类似。
2、十进制转化为二进制,用短除式,除2取余法,即把要转换的数,除以2,得到商和余数,将商继续除以2,直到商为0。最后将所有的余数倒序排列,得到的数就是转换的结果。
例如把十进制数()1077转化为二进制数()2101101;
3.二进制数的计算法则;
⑴加法法则:0+0=00+1=11+0=01+1=10
⑵乘法法则:0×0=00×1=01×0=01×1=1
一个三位数的百位数字比各位数字大5,现将三位数按从个位到百位的顺序写成一个新的三位数,所得的三位数比原来小多少?解析:100(a+5)+10b+a-[100a+10b+a+5]=495
一个两位数,把它的两个数字相加,再乘4,就是原数,这样的两位数共有多少个?
解析:第一个符合你的条件的两位数是12,以后只要是12的倍数不超过50的两位数都符合你的要求,那就是12、24、36、48等4个。
在一个两位数的两个数字中间加一个0,那么所得的三位数比原数大6倍,那么这个两位数是多少?
解析:设原来的两位数个位上的数为a,十位上的数为b,然后可以列方程,大6倍,即为7倍,那么7(10b+a)=100b+a,70b+7a=100b+a,30b=6a,5b=a,则a/b=5,a和b 只能分别是5和1,则原来的两位数是15。
有一个四位数各位数字互不相同,将它的各位数字顺序颠倒过来,得到一个新的四位数,新数比原数大7452,则原来的四位数是多少?
解析:1609或1829分析:用ABCD来表示原四位数,则新四位数为DCBA,则,DCBA-ABCD=7452;由最高位看起,A最大为2,则D=9;但个位上10+A-D=5,所以,A只能是1;接下来看百位,B最大是8,那么,C=2正好能满足要求,B也可以使6,那么,C=0也满足要求。所以,原四位数是1829或1609。验算:9061-1609=74529281-1829=7452。
一个电话号码六位数,其中左边三个数字相同,右边三个数字是三个连续的自然数,六个数位上得数字之和恰好等于末尾的两位数,这个电话号码可能是多少?
解析:333012或者是555321
分析:设这个电话号码为mmmx(x+1)(x+2)或者是mmm(x+2)(x+1)x
根据已知条件,得到
3m+3x+3=10(x+1)+(x+2)=11x+12因为(x+1)在十位上,所以要×10
即3m=8x+9
又因为m和x都是0~9中的整数,满足上式的只有当x=0,m=3时.
所以电话号码是333012
或者:3m+3x+3=10(x+1)+x=11x+10
即3m=8x+7
又因为m和x都是0~9中的整数,满足上式的只有当x=1,m=5时.
所以电话号码是555321
如果一个多位数等于它的各位数字之和加上各位数字之积,则称这个多位数为幸运数,则:小于1000的幸运数有哪些?思考:是否有大于1000的幸运数?
解析:19,29,39…………99,共有9个
分析:两位数时:
10b+c=(b+c)+(b×c),即9b=b×c
有9个
三位数时:
a,b,c是1到9中的任意一个数字
100a+10b+c=(a+b+c)+(a×b×c)
99a+9b=a×b×c
不存在
综上所述大于1000的幸运数也不存在。
一个多位数去掉它的百位数字得到一个新的数,如果去掉它的十位数字又得到一个新的数,已知这三个数之和正好是2013,那么原来的多位数是多少?
解析:1723
分析:设这个多位数是abcd,根据题意可知:
abcd+acd+abd=2013
即:1200a+110b+20c+3d=2013
那么:a=1,110b+20c+3d=813
b=7,c=2,d=3
所以这个多位数是1723
abc是一个三位数,改变它各位数字的顺序后得到其他5个三位数的和是3194,那么abc是多少?
解析:358
分析:若将原数加进去,这6个数的和应该是222的倍数。且和÷222=数字之和
3194÷222=14 (86)
这个三位数的各个数位上的数字之和要比14大
若数字之和是15:15×222=33303330-3194=1361+3+6=10不符
若数字之和是16:16×222=35523552-3194=3583+5+8=16符合
这个数是358
若相同的汉字表示相同的数字,不同的汉字表示不同的数字,则在等式:
学习好勤动脑×5=勤动脑学习好×8中,学习好勤动脑所表示的六位数最少是多少?
解析:410256或615384
分析:设学习好勤动脑=abcdef=XY,则勤动脑学习好=defabc=YX(其中,X、Y都是三位数)因为:学习好勤动脑*5=勤动脑学习好*8所以有:5(XY)=8(YX),5(1000X+Y)=8(1000Y+X)5000X+5Y=8000Y+8X4992X=7995Y学习好/勤动脑=X/Y=205/128=410/256=615/384=820/512如果不同的汉字代表不同的数,那么学习好勤动脑=410256或615384
(1)试说明形如abcabc的六位数能被7、11、13整除
(2)试说明当abc与cab都是37的倍数时,bca也是37的倍数。
解析:(1)abcabc=1001(100a+10b+c)=7×11×13(100a+10b+c),
所以形如abcabc的六位数一定能被7,11,13整除.
(2)abc+bca+cab
=(100a+10b+c)+(100b+10c+a)+(100c+10a+b)
=111(a+b+c)
111能被37整除
所以abc+bca+cab 能被37整除
abc,cab 能被37整除
所以bca 能被37整除
把下列各数转化成十进制数:⑴()8463;⑵()122ba ;⑶()16
5fc 解析:(1)()8463=4×64+6×8+3×1=307,(2)()122ba =2×144+11×12+10×1=430(3)5×256+15×16+12×1=1532
要点:咱要了解的进位制:⑴本质:n 进制就是逢n 进一⑵n 进制下的数字最大为(n-1)特别的:超过9的一般用大写英文字母表示A:10,B:11,C:12,D:13,E:14,F:15…(3)n 进制与十进制的相互转化:除n 倒
取余法。十进制转化为二进制,用短除式,除2取余法,即把要转换的数,除以2,得到商和余数,将商继续除以2,直到商为0。最后将所有的余数倒序排列,得到的数就是转换的结果。
将()21110101改写成十进制数。
解析:1
22222456++++⑴将()1029写成二进制数⑵把十进制数2008转化为十六进制数;
(1)()1029=11101(2)2008=7D8,两位数要用字母表示。
解析:咱要了解的进位制:⑴本质:n 进制就是逢n 进一⑵n 进制下的数字最大为(n-1)特别的:超过9的一般用大写英文字母表示A:10,B:11,C:12,D:13,E:14,F:15…(3)n 进制与十进制的相互转化:除n 倒取余法。十进制转化为二进制,用短除式,除2取余法,即把要转换的数,除以2,得到商和余数,将商继续除以2,直到商为0。最后将所有的余数倒序排列,得到的数就是转换的结果。
用a ,b ,c ,d ,e 分别代表五进制中五个互不相同的数字,如果()5a de ,
()5adc ,()5aab 是由小到大排列的连续正整数,那么所表()5cde 示的整数写成十进制的表示是多少?解析:因为“n 进制下的数字最大为(n-1)”,五进制只能是0,1,2,3,4.C 加1就变了。把3个算式竖着写容易对比观察。C 只能是4,E 是3,B 是0.D=1,A=2.
将()10107改写成二进制数。
解析:1101011
二进制转换方法的口诀
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论