《对数函数》教学反思(5篇)
《对数函数》教学反思1
对数函数与指数函数互为反函数,它们的定义域、值域、对应法则、图像之间有较为明显的关系。因此在教学过程中,我类比指数函数图象和性质的研究,研究了对数函数图象和性质。同学们课堂上能积极主动参与获得性质的过程。我用了三节课就对数函数的图象和性质,图象和性质的应用进行讲解。可从作业和课堂效果看来。同学们没有对指数函数的性质和图象掌握的好,分析有以下原因。
1、学生对对数函数概念的'理解及对数的运算不过关。导致部分题目出现运算错误或不会。
2、利用对数函数的单调性比较俩个对数式的大小书写格式不规范。说明同学们用函数的观点解决问题的思想方法还没形成。
3、同学们对对数与指数的互化不是很熟练。导致有关指对互化题目出现错误。尤其是解决有关对数和指数混合式子的有关计算时困难很大,问题最多。还有在解决有关对数型函数定义域问题,更不会用对数函数的单调性去解决。
以上这些原因我通过认真的反思,同时参考学生提出的意见,决定讲俩节*题课,针对学生存在的共性问题解决,出他们的盲点,同时加强练*力度。从练*中发现问题,再利用晚自*系统讲
解,直到绝大部分学生理解掌握为止。
《对数函数》教学反思2
对数函数的教学共分两个部分完成。第一部分为对数函数的定义,图像及性质;第二部分为对数函数的应用。对数函数是在学*对数概念的基础上学*对数函数的概念和性质,通过学*对数函数的定义,图像及性质,可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,并且为学*对数函数以及对数函数的应用作好准备。
在教学过程中,我类比指数函数图象和性质的研究,研究了对数函数图象和性质。同学们课堂上能积极主动参与获得性质的过程。我用了三节课就对数函数的图象和性质,图象和性质的应用进行讲解。但是从作业和课堂效果看来。同学们没有指数函数的性质和图象掌握的好。特反思如下:
1、学生对对数函数概念的理解及对数的运算不过关。学生在做这些运算时有时不能灵活运用公式例如换底公式,有时学生会想当然地自己“发明”公式。导致部分题目出现运算错误或不会。
2、在利用对数函数的单调性比较两个对数式的大小书写格式不规范,因此在解题的过程中就把真数和底数混乱了,这说明同学们用函数的观点解决问题的思想方法还没形成。
3、在解有关求定义域的问题时,学生不能很好的掌握底数a的取值范围以及真数必修大于0.
4、同学们对对数与指数的互化不是很熟练。导致有关指数与对数互化题目出现错误。尤其是解决有关对数和指数混合式子的有关计算时困难很大,问题最多。还有在解决有关对数型函数定义域问题时,更不会用对数函数的单调性去解决。
以上这些原因我通过认真的反思,同时参考学生提出的意见,决定讲两节*题课,针对学生存在的.共性问题解决,出他们的盲点,同时加强练*力度。从练*中发现问题,再通过系统讲解,直到绝大部分学生理解掌握为止。
《对数函数》教学反思3
一、教材分析。
本节课是《普通高中课程标准实验教科书?数学1(必修)》(人教A版)第二章第2节第二课《对数函数及其性质》。本节课的内容在教材中起到了承上启下的关键作用。一方面,对数函数是在学生系统学*了函数概念,基本掌握了函数性质的基础上,进行研究的第一个重要的基本初等函数。作为基本初等函数,它是继指数函数之后对高中函数概念及性质的又一次应用;另一方面,对数函数是后续学*幂函数的基础,对于研究幂函数及其他基本初等函数,在研究方法上起到示范作用。
二、学生分析。
从学生的知识上看,学生已经学*了函数的定义、图像、性质,对函数的性质和图像的关系已经有了一定的认识。学生已经熟悉
研究函数的一般过程和方法,会用此来研究对数函数。
从学生现有的学*能力看,通过初中对函数的认识与理解,学生已具备了一定的观察事物的能力,积累了一些研究问题的经验,初步具备了抽象、概括的能力。通过教师启发式引导,学生能自主探究完成本节课的学*,会进行多媒体的基本操作。
三、教学目标。
1、知识与技能目标:
①通过具体实例了解对数函数模型的实际背景。
②初步理解对数函数的概念、图像和性质。
2、过程与方法目标:
①借助课件绘制对数函数图像,加深对定义的认识,增强对对数函数图像的直观感知。
②学生观察对数函数图像,通过代表发言等活动,探究对数函数性质。
③通过对对数函数的研究,体会数形结合、由具体到一般及类比思想。
3、情感态度与价值观目标:通过小组讨论、代表发言活动,培养合作交流意识。
四、教学环境与准备。
多媒体网络教室、课件。
五、教学过程。
1、探究新知。
(1)归纳定义。
设计意图:通过对函数解析式的分析,突出对底数取值的认识,引导学生把解析式概括为的形式,为形成对数函数定义作铺垫。
对数函数的定义:一般地,形如(且)的函数叫做对数函数,其中是自变量,函数的定义域为。
对数函数运算法则公式师生共同分析定义要点:
①定义域为。
②对数函数是形式化的定义。
③且。教师引导学生将指数函数定义与对数函数定义作对比。
(2)作图探究。
问题2:我们研究函数的一般过程是什么?
①教师启发学生思考:归纳定义,画出图像,观察图像,总结性质,继而进行性质应用。
(设计意图:对数函数作为基本初等函数,是继指数函数后对高中函数概念及性质的再次应用,学生已经熟悉研究函数的一般过程和方法,会用此来研究对数函数。)
②作图1:画出函数的图像。
学生独立在坐标纸上作图,教师巡视个别辅导,正投对比展示学生作图结果,总结作图要点,规范列表、描点、连线的每一
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论