中考数学三角函数公式汇总
  sin =的对边 / 斜边
  cos =的邻边 / 斜边
  tan =的对边 / 的邻边
  cot =的邻边 / 的对边
  Sin2A=2SinA?CosA
  Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1
  tan2A=(2tanA)/(1-tanA^2)
  (注:SinA^2 是sinA的平方 sin2(A) )
  sin3=4sinsin(/3+)sin(/3-)
  cos3=4coscos(/3+)cos(/3-)
  tan3a = tan a tan(/3+a) tan(/3-a)
  sin3a
  =sin(2a+a)
初中常用三角函数公式  =sin2acosa+cos2asina
  Asin+Bcos=(A^2+B^2)^(1/2)sin(+t),其中
  sint=B/(A^2+B^2)^(1/2)
  cost=A/(A^2+B^2)^(1/2)
  tant=B/A
  Asin+Bcos=(A^2+B^2)^(1/2)cos(-t),tant=A/B
  sin^2()=(1-cos(2))/2=versin(2)/2
  cos^2()=(1+cos(2))/2=covers(2)/2
  tan^2()=(1-cos(2))/(1+cos(2))
  tan+cot=2/sin2
  tan-cot=-2cot2
  1+cos2=2cos^2
  1-cos2=2sin^2
  1+sin=(sin/2+cos/2)^2
  =2sina(1-sina)+(1-2sina)sina
  =3sina-4sina
  cos3a
  =cos(2a+a)
  =cos2acosa-sin2asina
  =(2cosa-1)cosa-2(1-sina)cosa
  =4cosa-3cosa
  sin3a=3sina-4sina
  =4sina(3/4-sina)
  =4sina[(3/2)-sina]
  =4sina(sin60-sina)
  =4sina(sin60+sina)(sin60-sina)
  =4sina*2sin[(60+a)/2]cos[(60-a)/2]*2sin[(60-a)/2]cos[(60-a)/2]
  =4sinasin(60+a)sin(60-a)
  cos3a=4cosa-3cosa
  =4cosa(cosa-3/4)
  =4cosa[cosa-(3/2)]
  =4cosa(cosa-cos30)
  =4cosa(cosa+cos30)(cosa-cos30)
  =4cosa*2cos[(a+30)/2]cos[(a-30)/2]*{-2sin[(a+30)/2]sin[(a-30)/2]}
  =-4cosasin(a+30)sin(a-30)
  =-4cosasin[90-(60-a)]sin[-90+(60+a)]
  =-4cosacos(60-a)[-cos(60+a)]
  =4cosacos(60-a)cos(60+a)
  上述两式相比可得
  tan3a=tanatan(60-a)tan(60+a)
  tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);
  cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.
  sin^2(a/2)=(1-cos(a))/2
  cos^2(a/2)=(1+cos(a))/2
  tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))
  sin(++)=sincoscos+cossincos+coscossin-sinsinsin
  cos(++)=coscoscos-cossinsin-sincossin-sinsincos
  tan(++)=(tan+tan+tan-tantantan)/(1-tantan-tantan-tantan)
  cos(+)=coscos-sinsin
  cos(-)=coscos+sinsin
  sin()=sincoscossin
  tan(+)=(tan+tan)/(1-tantan)
  tan(-)=(tan-tan)/(1+tantan)
  和差化积
  sin+sin = 2 sin[(+)/2] cos[(-)/2]
  sin-sin = 2 cos[(+)/2] sin[(-)/2]
  cos+cos = 2 cos[(+)/2] cos[(-)/2]
  cos-cos = -2 sin[(+)/2] sin[(-)/2]
  tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)
  tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)
  sinsin = [cos(-)-cos(+)] /2
  coscos = [cos(+)+cos(-)]/2
  sincos = [sin(+)+sin(-)]/2
  cossin = [sin(+)-sin(-)]/2
  sin(-) = -sin
  cos(-) = cos
  tan (a)=-tan
  sin(/2-) = cos
  cos(/2-) = sin
  sin(/2+) = cos
  cos(/2+) = -sin
  sin() = sin
  cos() = -cos
  sin() = -sin
  cos() = -cos
  tanA= sinA/cosA
  tan(/2+)=-cot
  tan(/2-)=cot
  tan()=-tan
  tan()=tan
  诱导公式记背诀窍:奇变偶不变,符号看象限
  万能公式
  sin=2tan(/2)/[1+tan^(/2)]
  cos=[1-tan^(/2)]/1+tan^(/2)]
  tan=2tan(/2)/[1-tan^(/2)]
  其它公式
  (1)(sin)^2+(cos)^2=1
  (2)1+(tan)^2=(sec)^2
  (3)1+(cot)^2=(csc)^2
  证明下面两式,只需将一式,左右同除(sin)^2,第二个除(cos)^2即可
  (4)对于任意非直角三角形,总有
  tanA+tanB+tanC=tanAtanBtanC
  证:
  A+B=-C
  tan(A+B)=tan(-C)
  (tanA+tanB)/(1-tanAtanB)=(tan-tanC)/(1+tantanC)
  可得
  tanA+tanB+tanC=tanAtanBtanC
  得证
  同样可以得证,当x+y+z=nZ)时,该关系式也成立
  由tanA+tanB+tanC=tanAtanBtanC可得出以下结论
  (5)cotAcotB+cotAcotC+cotBcotC=1
  (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)
  (7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC
  (8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC
  (9)sin+sin(+2/n)+sin(+2*2/n)+sin(+2*3/n)++sin[+2*(n-1)/n]=0
  cos+cos(+2/n)+cos(+2*2/n)+cos(+2*3/n)++cos[+2*(n-1)/n]=0以及
  sin^2()+sin^2(-2/3)+sin^2(+2/3)=3/2

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。