2022-2023学年高三上数学期末模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知角的顶点与坐标原点重合,始边与轴的非负半轴重合,它的终边过点,则的值为( )
A. B. C. D.
2.下图为一个正四面体的侧面展开图,为画直方图的四个步骤的中点,则在原正四面体中,直线与直线所成角的余弦值为( )
A. B.
C. D.
3.若的展开式中含有常数项,且的最小值为,则( )
A. B. C. D.
4.是的( )条件
A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要
5.若、满足约束条件,则的最大值为( )
A. B. C. D.
6.港珠澳大桥于2018年10月2刻日正式通车,它是中国境内一座连接香港、珠海和澳门的
桥隧工程,桥隧全长55千米.桥面为双向六车道高速公路,大桥通行限速100km/h,现对大桥某路段上1000辆汽车的行驶速度进行抽样调查.画出频率分布直方图(如图),根据直方图估计在此路段上汽车行驶速度在区间[85,90)的车辆数和行驶速度超过90km/h的频率分别为( )
A.300, B.300, C.60, D.60,
7.设集合则( )
A. B. C. D.
8.展开式中x2的系数为( )
A.-1280 B.4864 C.-4864 D.1280
9.设函数是奇函数的导函数,当时,,则使得成立的的取值范围是( )
A. B.
C. D.
10.复数的实部与虚部相等,其中为虚部单位,则实数( )
A.3 B. C. D.
11.已知且,函数,若,则( )
A.2 B. C. D.
12.已知曲线且过定点,若且,则的最小值为( ).
A. B.9 C.5 D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知向量,,若,则________.
14.为了了解一批产品的长度(单位:毫米)情况,现抽取容量为400的样本进行检测,如图是检测结果的频率分布直方图,根据产品标准,单件产品长度在区间的一等品,在区间和的为二等品,其余均为三等品,则样本中三等品的件数为__________.
15.已知平面向量、的夹角为,且,则的最大值是_____.
16.已知函数,对于任意都有,则的值为______________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)设不等式的解集为M,.
(1)证明:;
(2)比较与的大小,并说明理由.
18.(12分)已知函数(为实常数).
(1)讨论函数在上的单调性;
(2)若存在,使得成立,求实数的取值范围.
19.(12分)如图,在直三棱柱中,,点分别为和的中点.
(Ⅰ)棱上是否存在点使得平面平面?若存在,写出的长并证明你的结论;若不存在,请说明理由.
(Ⅱ)求二面角的余弦值.
20.(12分)等差数列的前项和为,已知,.
(Ⅰ)求数列的通项公式及前项和为;
(Ⅱ)设为数列的前项的和,求证:.
21.(12分)如图,在四棱锥中,四边形是直角梯形, 底面 ,是的中点.
(1).求证:平面平面;
(2).若二面角的余弦值为,求直线与平面所成角的正弦值.
22.(10分)已知函数,.
(1)讨论的单调性;
(2)当时,证明:.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【解析】
根据三角函数定义得到,故,再利用和差公式得到答案.
【详解】
∵角的终边过点,∴,.
∴.
故选:.
【点睛】
本题考查了三角函数定义,和差公式,意在考查学生的计算能力.
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论