什么是可视化技术
一、什么是可视化(visualization)? 
种类繁多的信息源产生的大量数据,远远超出了人脑分析解释这些数据的能力。由于缺乏大量数据的有效分析手段,大约有95%的计算被浪费,这严重阻碍了科学研究的进展。为此,美国计算机成像专业委员会提出了解决方法——可视化。可视化技术作为解释大量数据最有效的手段而率先被科学与工程计算领域采用,并发展为当前热门的研究领域——科学可视化。 可视化把数据转换成图形,给予人们深刻与意想不到的洞察力,在很多领域使科学家的研究方式发生了根本变化。可视化技术的应用大至高速飞行模拟,小至分子结构的演示,无处不在。在互联网时代,可视化与网络技术结合使远程可视化服务成为现实,可视区域网络因此应运而生。它是SGI公司在20023月提出的新理念。它的核心技术是可视化服务器硬件和软件。 科学可视化的主要过程是建模和渲染。建模是把数据映射成物体的几何图元。渲染是把几何图元描绘成图形或图像。渲染是绘制真实感图形的主要技术。严格地说,渲染就是根据基于光学原理的光照模型计算物体可见面投影到观察者眼中的光亮度大小和彩的组成,并把它转换成适合图形显示设备的颜值,从而确定投影画面上每一像素的颜和光照效果,最终生成具有真实
感的图形。真实感图形是通过物体表面的颜和明暗调来表现的,它和物体表面的材料性质、表面向视线方向辐射的光能有关,计算复杂,计算量很大。因此工业界投入很多力量来开发渲染技术。
二、可视化硬件
可视化硬件主要是图形工作站和超级可视化计算机。图形工作站广泛采用RISC处理器和UNIX操作系统。具有丰富的图形处理功能和灵活的窗口管理功能,可配置大容量的内存和硬盘,具有良好的人机交互界面、输入/输出和网络功能完善,主要用于科学技术方面。  1997SGI推出了不用总线UMA结构O2工作站。它采用高带宽的存储器系统,取消了视频卡、图形卡、图像卡。图形处理、图像处理、视频处理存储器主存储器用一个统一的存储器系统代替,带宽可达到2.1GB/sCPU和视频显示可直接访问统一的存储器系统。此外,它还有一个单独的窗口界面,能让用户通过该窗口访问Web站点,而一个文件列表在窗口顶部,方便用户对媒体资源进行管理。 2000SGI推出强力台式工作站Octane2Octane2把具有突破性的新一代Vpro3D图形系统、先进的交叉开关(Crossbar)结构和最新的MIPS RISC处理器有机地结合在一起。有了Octane2及其空前的精确性、交互性和快速的图
形功能,用户可以解决最富有挑战性的三维造型、可视化及图形处理问题。  Octane2数据可视化什么意思含有集成在一块芯片上的OpenGL 1.2的核心功能及图像扩展的部分硬件加速功能。可用硬件实现镜面光照计算、能够快速准确地展现曲面,并具有48比特RGBA功能。它是当今高水准的可视化台式工作站。它可为用户提供双通道的双头显示。 20007SGI推出了可视化与超级计算完美结合的Onyx 3000系列超强图形系统 Onyx 3000在模块化方面迈出了一大步。系统硬件由7种模块构成:图形扩展模块G-brick,基本输入/输出扩展模块I-brickPCI扩展模块P-brick,高性能I/O扩展模块X-brick路由器互连扩展模块R-brickCPU扩展模块C-brick磁盘扩展模块D-brick。全机采用NUMA3体系结构。高性能的模块化连通性有利于把超级计算能力和可视化处理无缝集成。全机可由2CPU扩展到512CPUOnyx3000采用InfiniteReality3图形处理流水线,可实时地对三维形体进行渲染。其中包括彩、透明、纹理、光照等功能。 20022SGI推出Onyx3000IP机,采用性能更好的Infinite Performance图形处理流水线,速度更快、图形更精致。Onyx3000其卓越的性能和灵活性可使用户得到惊人的视觉真实效果,并充分保护用户的投资。
三、可视化软件
可视化软件一般分为三个层次。 第一层是操作系统,该层的一部分程序直接和硬件打交道,控制工作站或超级计算机各种模块的工作,另一部分程序可进行任务调度,视频同步控制,以TCP/IP方式在网络中传输图形信息及通信信息。 第二层为可视化软件开发工具,它用来帮助开发人员设计可视化应用软件。 第三层为各行各业采用的可视化应用软件。 大多数可视化工作一般都在图形工作站上进行,少数大型的、需要协同工作的可视化工作在超级图形计算机上进行。 SGI是视算技术的先驱之一,在强有力的高速图形硬件支持下,SGI推出了一系列功能强大的可视化软件开发工具,如IRISGL(图形库)、IL(图像库)、VL(视频库)ML(电影库)、CASE Vision(软件工程可视化开发工具)等,其中IRISGL后来被工业界接受,成为业界开放式标准,称为OpenGL。 OpenGL支持一种立即方式的接口,信息可以直接流向显示器。SGI还开发出许多OpenGL应用程序接口API),如OpenGL Optimizer是一种多平台工具箱,提供高层次的构造、交互操作,在CAD/CAM/CAEAEC的应用中提供最优的图形功能。OpenGL Volumizer是体渲染的突破性工具,便于对基于体素的数据集可视化。OpenGL Performer是实时三维图形渲染工具。OpenGL Inventor是三维视景处理工具。Open GL VizServer是一种提供远程可视化服务的工具。 自从OpenGL推出以来,已有两千多个三维图形应用软件在其上开发出来。如A/W公司的三维动
画软件MayaPTC公司的CAD/CAM/CAE应用软件Pro/EngnieerLandmark公司的石油勘探与开发软件R2003,MultiGen公司的视景仿真软件Paradigm等。
四、可视化关键技术
1)、名字服务和资源检索技术
对于一个管理成千上万数量级摄像头资源的监控管理平台,实现对资源的快速检索是非常重要的问题。在设计中采用了先进的名字服务方法,能有效实现所有资源的统一命名和快速检索。实现方案是,为每一个摄像头定义一个独立的名字和属性,属性包括与摄像头相关的编码设备(DVR)、控制设备(如矩阵)、存储备份设备(NVR)、媒体转发设备(如媒体服务器)的信息(IP地址、端口号、通道号)。系统对该摄像头的显示和检索可以使用三种方式:按名字进行搜索(支持模糊搜索)、按资源目录进行查以及按GIS地理信息服务进行搜索。所有搜索最终会定位到资源的名称,通过资源名称定位到该资源的相关信息,系统可以利用这些信息实现全域联网的视频浏览、录像、存储备份、PTZ控制、视频分发以及其他管理应用功能[1]
2)、异构硬件的集成技术
对于省级视频监控系统,所用到的前端摄像头、编码器、控制器以及报警设备将会面临多种厂家、多种型号的集成问题。例如广州市入围的网络视频服务器供应商有8家,数字硬盘录像机厂家有10多家,摄像头厂家有20多家,由于目前没有制定统一的编码标准和PTZ控制协议,因此每个厂家编码设备输出的数字视音频信号、控制协议都不相同,每种摄像头的控制指令也不相同。管理平台如何统一显示、存储前端的视音频信息,统一控制前端不同的PTZ设备是一大技术难题。这就需要很好解决这一难题,实现不同厂家的设备间的完全集成,包括通过统一的通信协议转换及媒体解码软件实现在客户端工作站上播放不同编码格式的视频图像;通过统一的电视墙管理软件实现在电视墙上切换显示不同厂家设备传送的视频信号;通过统一的控制指令实现对前端不同厂家PTZ设备的控制。

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。