中英文资料外文翻译文献
一.英文原文
A NEW STAGGERED SHEAR WALL STRUCTURE FOR HIGH-RISE BUILDING
ABSTRACT
Shear wall structure has been widely used in tall buildings. However, there are still two obvious disadvantages in this structure: first of all, space between two shear wall could not too big and the plane layout is not flexible, so that serviceability requirements are dissatisfied for public buildings; secondly, the bigger dead weight will lead to the increase of constructional materials and seismic force which cause desigh difficulty of super-structures and foundations. In this paper,    a new type tall building structure-staggered shear wall structure-is presented in order to overcome above disadvantages of traditional shear wall, which not only provide big space for architectural design but also has lighter dead weight and high capacity of resistance to horizontal load. REINFORCEMENT CONCRETE STAGGERED SHEAR WALL STRUCTURAL SYSTEM IN TALL BUILDINGS Structure Style and Features of New Type Shear Wall Structural System:In this new-type shear wall structural system,every shear wall is at staggered location on adjacent floor, as well as adjacent shear walls are staggered with each other.One end of floor
slab is supported on top edge of one shear wall; the other end of floor slab is supported on bottom edge of adjacent shear wall. The edge column and beam are set beside every shear wall. The embedded column and connected beam are set on every floor. The advantage of this structural system is its big use space with small span floor slab.The shear wall arrangement can be staggered or not according to use requirement, shown in Figure 1. As a result, the width of one bay is increased from L to 2L or 3L. In addition, the dead weigh of staggered shear wall is smaller than that of traditional down-to-ground shear wall, so the material cost is reduced. The structural analysis result indicates the wall amount decreases by 25% and the dead weigh decreased by 20%
comparing the new-type shear wall with traditional shear wall, while both have same lateral stiffness. Two main obvious disadvantages of traditional shear wall are overcome and the use space of shear wall structures is enlarged effectively. Besides the architectural convenience, the staggered shear wall has other advantages. Although the stiffness of every shear wall is changed along vertical direction, the sum stiffness of whole structure is even along vertical direction when adjacent shear walls are set on staggered locations. The whole structural deformation is basically bending style. Form the analysis of reference,the staggered shear wall has stronger whole stiffness, less top-storey displacement(decreasing by about 58%),and less relative storey displacement comparing with tradition
al coupled shear wall.Under the same horizontal load, the staggered shear wall structure could effectively cut down the internal force of coupled beam and embedded column, at the same time the structural seismic performance is improved.
1 2
Working Mechanism of New Type Shear Wall Structure
Under the vertical load, this structure effect is the same as ordinary frame-shear wall structure, that is, the shear wall and column act together to resist the vertical load. Because the stiffness of every span shear wall is large and the deformation is small, the bending deformation and moment of columns are very small. Under lateral load, the structure deformation is uniform, thereby it can improve the whole st
iffness effectively and the higher capability resisting lateral load is obtained.The main cause is the particular arrangement method of walls, which could be explained as follows: firstly, the lateral
shearing force transfer mechanism is different from traditional shear wall. The lateral shearing force on top edge of shear wall is transferred to under layer floor slab though the bottom edge of wall, then to under storey adjacent shear wall through the under storey floor slab. At last, the lateral shearing force is transferred to ground floor shear wall and foundation.By this way,the lateral shearing force transfer mechanism is special, in which every floor slab transfer the lateral shearing force of itself floor and above floor.But in traditional shear wall directly. This structure makes the best use of the peculiarity that the slab stiffness is very strong to transfer and resist lateral shear. Although the shear walls are not up bottom in sequence, the slabs which has larger stiffness participate in the work transferring and resisting lateral shear force from the top to the down,from the floor middle part to edge, and from the edge to middle part in whole structure.It corresponds to a space integer structure with large lateral stiffness connected all shear walls by slabs, which have been cut in every story and span. It has been proved in author’s paper that the whole structure will occur integer-bending deformation under lateral force action,while every storey shear walls will occur integer bending without local bending. Secondly, in every piece of staggered shear wall (shown in Figure 2),the shear wall arrangement forms four large
X diagonal brace along adcb,cfed, ehgf, gjih (dashed as shown in Figure 2).Because the shear walls forming X diagonal brace have large stiffness and strength, the X diagonal brace stiffness is strong. In addition, both the edge beams and columns around the boundary form bracing ‘frame”with large lateral stiffness. Hence, the structural integer stiffness is greatly improved.
Due to the above main reasons, this structure is considered to have particular advantages compared with traditional shear wall structure in improving structural lateral stiffness. It can provide larger using space, and reduce the material, earthquake action as well as dead weight.Also, it can provide larger lateral stiffness, which will benefit the structural lateral capability. In author’s paper and in this paper the example calculating results indicates that lateral stiffness of this structure are double of coupled shear wall structure ,and nearly equal to integer shear wall structure (light small than the latter).
Aseismic analysis and construction measures in a building
example
In order to study dynamic characteristics and aseismic performances in this structural system, the staggered shear wall will be used as all cross walls in the large bay shear wall structure without internal longitudinal walls.
Example. Thereis a nine-storey reinforcement concrete building, which is large bay shear wall struvture, shown in figure3. here,walls columns, beams, and slabs are all cast-in-situ. The thickness t=240mm is used for shear walls from 1 to 3 stories, while thickness t=200mm is used for shear walls from 4 to 9 stories. Given the section of columns of width b=500mm and depth h=600mm . Given the section of beams of width b=300mm and depth h=700mm . The modulus of elasticity is assumed to be E=2.1*10E7
kN/2m  and G=1.05*10E7 kN /2m . The external longitudinal walls are cast-in-situ wall frame, and the cross walls are staggered shear walls , showm in Figure 3 (a) (scheme I) ,intensity 8 zones near earthquake, 2type site ground 。The aseismic analysis is given by using the computer program FWD with wallboard element based on modal ayalysis response spectrum method 。 In order to compare ,the aseismic analysis of others are given at the same time , which are the cross walls used integer walls (scheme 2)and coupled walls (scheme3), shown in Figure 3 (a) and (b) ,respectively. The related results are listed in Table 1 and Table 2, where the seismic shear and displacement are all adopt from the SRSS result of formal three modal shapes.
weigh翻译3
From the abve calculated results , it can be observed, firstly , that the building bay increased from 7.2
m(scheme 2,3) to 7.2*2=14.4m (scheme 1 ) .Therefore, the useable floor area is increased greatly while dead weight is decreased 2093kN, and concrete of shear walls is saved (40% compared with scheme 2 or about 25% compared with scheme 3). Because the structural stiffness based on the arrangement method of shear walls is uniform, the whole lateral stiffness is increased a lot than that of schene 3 and close to scheme 2 , however, the seismic force is decreased greatly due to the decrease of dead weight ,which reduce the bottom shear coefficient a from 0.092 (scheme 2) to 0.071, thereby it can solve problems in traditional shear wall structures with light increase of the top-storey displancement ( scheme 1 only increases 0.11 cm than scheme 2 ), such as larger bottom shear seismic coefficient . Compared with coupled wall (scheme 3), this structure obviously advances lateral stiffness that the top-storey displancement ∆=0.89cm is about 45% of the coupled wall ∆=1.94cm .However, the concrete amount and dead weight reduce 25 % than that of coupled wall. This result shows that the new type struvture can adjust the structural stiffness and reduce eigher dead weight or seismic force when the solid shear wall with small opening, which has large stiffness , dead weight , seismic force , and material amount , is dissatisfied because the section of shear

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。