三角函数的诱导公式
教案 A
教学目标
一、知识与技能
1.理解诱导公式的推导过程;
2.通过诱导公式的具体运用,熟练正确地运用公式解决一些三角函数的求值、化简和证明问题,体会数式变形在数学中的作用.
3.进一步领悟把未知问题化归为已知问题的数学思想,通过一题多解,一题多变,多题归一,提高分析问题和解决问题的能力.
二、过程与方法
利用三角函数线,从单位圆关于轴、轴、直线的轴对称性以及关于原点O的中心对称性出发,通过学生的探究,明了三角函数的诱导公式的来龙去脉,理解诱导公式的推导过程;培养学生的逻辑推理能力及运算能力,渗透转化及分类讨论的思想.
)
三、情感、态度与价值观
通过本节的学习使学生认识到了解任何新事物须从它较为熟悉的一面入手,利用转化的方法将新事物转化为我们熟知的事物,从而达到了解新事物的目的,并使学生养成积极探索、科学研究的好习惯.
教学重点、难点
教学重点:五组诱导公式的推导和六组诱导公式的灵活运用,三角函数式的求值、化简和证明等.
教学难点:六组诱导公式的灵活运用.
教学关键:五组诱导公式的探究.
教学突破方法:问题引导,充分利用多媒体引导学生主动探究.
教法与学法导航
教学方法:探究式,讲练结合.
学习方法:切实贯彻学案导学,以学生的学为主,教师起引导的作用,具体表现在教学过程当中.
\
1. 充分利用多媒体引导学生完善从特殊到一般的认知过程;
2. 强调记忆规律,加强公式的记忆;
3. 通过对例题的学习,完成学习目标.
教学准备
教师准备:多媒体,投影仪、直尺、圆规.
学生准备:练习本、直尺、圆规.
教学过程
一、创设情境,导入新课
我们利用单位圆定义了三角函数,而圆具有很好的对称性.能否利用圆的这种对称性来研究三角函数的性质呢例如,能否从单位圆关于x 轴、y 轴、直线y=x 的轴对称性以及关于原点O 的中心对称性等出发,获得一些三角函数的性质呢
二、主题探究,合作交流
%三角函数诱导公式推导
提出问题
①锐角α的终边与+α角的终边位置关系如何
②它们与单位圆的交点的位置关系如何
师生互动:引导学生充分利用单位圆,并和学生一起讨论探究角的关系.无论α为锐角还是任意角,+α的终边都是α的终边的反向延长线,所以先选择+α为研究对象.
利用图形还可以直观地解决问题②,角的终边与单位圆的交点的位置关系是关于原点对称的,对应点的坐标分别是P1(x,y)和P2 ( x, y).
指导学生利用单位圆及角的正弦、余弦函数的定义,导出公式二:
sin(+α)=-sinα,cos(+α)=-cosα,tan(π+α)=tanα.
提出问题: α角的终边与角α的终边位置关系如何
师生互动:让学生在单位圆中讨论-α与α的位置关系,这时可通过复习正角和负角的定义,启发学生思考.
@
α角的终边与角α的终边关于x轴对称,它们与单位圆的交点坐标的关系是横坐标相等,纵坐标互为相反数.从而完成公式三的推导,即:
sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tanα.
教师点拨学生注意:无论α是锐角还是任意角,公式均成立.并进一步引导学生观察分析公式三的特点,得出公式三的用途:可将求负角的三角函数值转化为求正角的三角函数值.
提出问题:π-α角的终边与角α的终边位置关系如何
师生互动:讨论π-α与α的位置关系,这时可通过复习互补的定义,引导学生思考:任意角α和π-α的终边的位置关系;它们与单位圆的交点的位置关系及其坐标:π-α角的终边与角α的终边关于y轴对称,它们与单位圆的交点坐标的关系是纵坐标相等,横坐标互为相反数.从而完成公式四的推导,即:
sin(π-α)=sinα,cos(π-α)=-cosα,tan(π-α)=-tanα.
强调无论α是锐角还是任意角,公式均成立.引导学生观察分析公式三的特点,得出公式四的用途:可将求π-α角的三角函数值转化为求角α的三角函数值.
让学生分析总结诱导公式的结构特点,概括说明,加强记忆.
我们可以用下面一段话来概括公式一~四:
α+k·2π(k∈Z),-α,π±α的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号.进一步简记为:“函数名不变,符号看象限”.点拨、引导学生注意公式中的α是任意角.
】
提出问题
终边与角α的终边关于直线y=x对称的角有何数量关系
师生互动:我们借助单位圆探究终边与角α的终边关于直线y=x对称的角的数量关系.教师充分让学生探究,启发学生借助单位圆,点拨学生从终边关于直线y=x对称的两个角之间的数量关系,关于直线y=x对称的两个点的坐标之间的关系进行引导.
讨论结果:如图,设任意角α的终边与单位圆的交点P1的坐标为(x,y),由于角 α的终边与角α的终边关于直线y=x对称,角 α的终边与单位圆的交点P2与点P1关于直线y=x对称,因此点P2的坐标是(y,x),于是,我们有sinα=y,cosα=x,cos( α)=y,sin( α)=x.从而得到公式五:
cos( α)=sinα, sin( α)=cosα.
提出问题
能否用已有公式得出+α的正弦、余弦与α的正弦、余弦之间的关系式
师生互动:教师点拨学生将+α转化为π ( α),从而利用公式四和公式五达到我们的目的.因为+α可以转化为π ( α),所以求+α角的正余弦问题就转化为利用公式四接着转化为利用公式五,这时可以让学生独立推导出公式六:
sin (+α)=cosα,
《
cos(+α)=-sinα.
提出问题
你能概括一下公式五、六吗
师生互动:结合上一堂课研究公式一~四的共同特征引导学生寻求公式五、六的共同特征,指导学生用类比的方法即可将公式五和公式六进行概括.
讨论结果:±α的正弦(余弦)函数值,分别等于α的余弦(正弦)函数值,前面加上一个把α看成锐角时原函数值的符号.
进一步可以简记为:函数名改变,符号看象限.
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系QQ:729038198,我们将在24小时内删除。
发表评论